

Utokyo Field Phenomics Lab

### Virtual broccoli farmland by fusing close-range and aerial phenotyping

Haozhou Wang

Tang Li, Erika Nishida, Yoichiro Kato, Yuya Fukano and Wei Guo

2023/07/17



haozhou-wang@outlook.com





# Introduction



UTokyo Field Phenomics LAB

Farmland monitoring

#### **Conventional method**



For agriculture activities, it is necessary to monitor the crop status

- Response to stress, like disease, pest, etc. in time.
- Decide the optimal harvest date

Limits: Time costly, labor intensive, low accuracy & efficiency



#### Aerial survey



Drone-based phenotyping approach

Helps to collect image data for entire field in a few hours

(high efficiency)



# The resolution is not enough for accurate organ-level analysis





#### Leaf occlusion

(Low quality)

#### Poor organ structure

UTokyo Field Phenomics LAB





Close-range survey



Close-range (indoor) reconstruction can obtain ultra high-quality crop models



- Need destructive sampling
- ~10min processing per plant
- Not suitable for surveying all plants in entire field

(Low efficiency)



**Research question** 



UTokyo Field Phenomics LAB

#### (high efficiency & quality)



3D high quality crop models of entire field (virtual farmland)

Predict yield, harvest date and income more accurately



UTokyo Field Phenomics LAB

The proposed data-fusion workflow







### Close-range 02 3D pipeline





#### 参東京大学 2. Close-range 3D pipeline

#### Broccoli head 3D reconstruction



1. Semi-automatic image collection



#### 参東京大学 THE UNIVERSITY OF TOKYO 2. Close-range 3D pipeline

Broccoli head 3D reconstruction



2. Image preprocessing by labor-saving dual deep learning approaches (remove background effects)







#### 参東京大学 HIE UNIVERSITY OF TOKYO 2. Close-range 3D pipeline

Broccoli head 3D reconstruction







Real world photo

Obtained 3D model





#### Top direction correction



#### "Lying" Coordinate





0 025



UTokyo Field Phenomics LAB

**Traits calculation** 



|    | Traits                                 | Unit            |
|----|----------------------------------------|-----------------|
| 1D | Crown/head height (m)                  | m               |
|    | Center point (x, y)                    | m               |
|    | Centroid point (x, y)                  | m               |
|    | Roundness                              | -               |
| 2D | Minimum area rectangle (width, length) | m               |
|    | Ellipse axis length (long, short)      | m               |
|    | Ellipse orientation                    | degree          |
|    | 2D convex area                         | cm <sup>2</sup> |
|    | Projected area                         | cm <sup>2</sup> |
| 3D | 3D Convex volume                       | cm <sup>3</sup> |
|    | 3D Concave volume                      | cm <sup>3</sup> |
|    |                                        |                 |

#### (10) Obtained Morphological traits





**Traits validation** 

Achieve high-correlation with the manual measurements







## Aerial 3D 03 pipeline





Field data collection and analysis



(3D reconstruction) Metashape



Weakly supervised segmentation pipeline (labor saving)





Head segmentation results



Morphological traits calculation

For each broccoli head



Minimum area rectangle max/min side-length

Equivalent diameter

Eccentricity, circularity



Major axis length Minor axis length

Area, perimeter







UTokyo Field Phenomics LAB







### Cross-scale 04 data fusion







Model calibration by auto-machine learning







#### Performance of Auto-ML calibration









How to put high-quality close-range models back to low quality field model?



Template matching between aerial and close-range models









#### Template matching results





Aerial segmentation results

Aerial field 3D models

Template matched models





#### Template matching results







# Discussion & 05 Conclusion



We obtained the 3D structure model and calculated the morphological traits of broccoli head from aerial and close-range

Implemented the virtual broccoli farm by fusing the model data from aerial and close-range

#### For future work

- Implement a more user-friendly UI and apply to actual farmland
  - Update the template matching and transformation to shape-based rather than current numerical-based



UTokyo Field

Phenomics LAB



# Thank you

