

UTokyo Field Phenomics Lab

Virtual Broccoli Farmland Implementation by Drone-based Phenotyping and Cross-scale Data Fusion

Haozhou Wang Tang Li, Nishida Erika, Kato Yoichiro, Fukano Yuya, Wei Guo

2023/11/29

haozhou-wang@outlook.com

Multi-time harvest: labor cost One-time harvest: food loss Farmer's income decrease

参東京大学 **Determine the optimal harvest date**

Field check (longest + shortest length) High labor cost \downarrow Growth condition in the field \downarrow Subjective estimate harvest date

High-throughput data collection

Simulation

Data visualization

[1] Augmented Reality Company | VR & MR Solution | AR Development Agency (yeppar.com)

Need to analysis huge amount of image data (difficult to process in time)

Aerial reconstruction products hard to achieve organ-level analysis quality

3D canopy model (PCD) 2D field map (DOM)

Canopy occlusion affects traits accuracy

Non-complete structure affects the virtual farmland visualization

Narrow the processing regions by using prior knowledge of agriculture

Broccoli head position is almost the same as its seedling position

Narrow the processing area around the seedling area

(100 x 100) pixels x 3000 count = 30 billion pixels per flight ~ 1.5 raw image per crop 5742 x 3648 ~ 20 billon pixels

100 px

Seedling position on flowering stage on field map (geo-coordinate)

Segmented head results

Minimum area rectangle max/min side-length

Equivalent diameter

• bro cen

broccoli center points

Eccentricity, circularity

Major axis length Minor axis length

Area, perimeter

Convex area

The Auto-ML calibration improved the traits closer to actual size

参東京大学 —— Results: 3D virtual farmland visualization

Aerial survey obtained position and traits

Aerial field low quality 3D models

Smart farming / virtual farmland has shown its potential to:

Evaluate and predict individual plant growth

Reducing the effects of occlusion & provide 3D visualization

Reducing on-farm food loss & Increase farmer's income

Future work:

Collect more valuable data & robust model

Test and apply to commercial farmland

haozhou-wang@outlook.com