## UTokyo Field Phenomics Lab

# Procedural Geometric Modeling for Plant Phenomics by Blender: Case Study of Maize

Haozhou Wang

2022/09/20



# Background

# **1.1 Digital Clone for Agriculture**



#### **Digital Clone**

"Digital clone is the digital equivalent of real-life object mirrors its behavior and status over lifetime in a virtual space" [2]

If apply in agriculture:

- Manage operation remotely based on digital information
- Simulate the operation effects and find the best operation.

Plant 3D model is the fundamental

[1] https://www.wur.nl/en/newsarticle/WUR-is-working-on-Digital-Twins-for-tomatoes-food-and-farming.htm

[2] Verdouw, C., Tekinerdogan, B., Beulens, A., Wolfert, S., 2021. Digital twins in smart farming. Agricultural Systems 189, 103046. https://doi.org/10.1016/j.agsy.2020.103046

# **1.2 Digital Plant Data Formats**



# Modeling

## Non-exist plant based

Create "Non-existent" plant model from shape and structure simulation



# Reconstruction

## Exist plant based

Build model from existing plants, by photos or 3D scanning devices



#### Laser based scanning

Image based reconstruction

[1] https://www.poliigon.com/models/plants

[2] M. Cieslak, N. Khan, P. Ferraro, R. Soolanayakanahally, S.J. Robinson, I. Parkin, I. McQuillan, P. Prusinkiewicz, L-system models for image-based phenomics: case studies of maize and canola, In Silico Plants. (2021) diab039. <a href="https://doi.org/10.1093/insilicoplants/diab039">https://doi.org/10.1093/insilicoplants/diab039</a>.

# Modeling

## Non-exist plant based

Create "Non-existent" plant model from shape and structure simulation

## manual modeling [1]



The most common way to get plant models, the performance highly relies on the modeler

Commercial models are also available on some website [1], the price around \$10 each

Suitable for CG / game industry assets, **NOT** a good choice for agricultural purposes (**variation for each plant**)

# Modeling

## Non-exist plant based

Create "Non-existent" plant model from shape and structure simulation

## procedural modeling [1]



Using parameters to control the shape of model





n=7,  $\delta$ =22.5°

→ [&FL!A]////', [&FL!A]/////', [&FL!A]  $\rightarrow$  S ///// F S  $\rightarrow$  F L  $\rightarrow$  ['''  $\wedge \wedge \{-f+f+f-|-f+f+f\}$ ]

Figure 1.25: A three-dimensional bush-like structure

[1] M. Cieslak, N. Khan, P. Ferraro, R. Soolanayakanahally, S.J. Robinson, I. Parkin, I. McQuillan, P. Prusinkiewicz, L-system models for image-based phenomics: case studies of maize and canola, In Silico Plants. (2021) diab039. https://doi.org/10.1093/insilicoplants/diab039.

## Using parameters to control the shape of model

# Modeling

## Non-exist plant based

Create "Non-existent" plant model from shape and structure simulation

## procedural modeling [1]





[1] M. Cieslak, N. Khan, P. Ferraro, R. Soolanayakanahally, S.J. Robinson, I. Parkin, I. McQuillan, P. Prusinkiewicz, L-system models for image-based phenomics: case studies of maize and canola, In Silico Plants. (2021) diab039. <a href="https://doi.org/10.1093/insilicoplants/diab039">https://doi.org/10.1093/insilicoplants/diab039</a>.
[2] <a href="https://www.bilibili.com/video/BV1a7411w7EU/">https://doi.org/10.1093/insilicoplants/diab039</a>.
[3] Fractals and Procedural Production | Houdini, Fractals, Tutorial (pinterest.com)

## Using parameters to control the shape of model

# Modeling

## Non-exist plant based

Create "Non-existent" plant model from shape and structure simulation

## procedural modeling [1]



Commercial software L-system

Most for buildings or arts, and possible for plants



# Reconstruction

## Exist plant based

Build model from existing plants, by photos or 3D scanning devices



#### Laser based scanning



[1] Schunck, D., Magistri, F., Rosu, R.A., Cornelißen, A., Chebrolu, N., Paulus, S., Léon, J., Behnke, S., Stachniss, C., Kuhlmann, H., Klingbeil, L., 2021. Pheno4D: A spatiotemporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis. PLoS One 16, e0256340. <u>https://doi.org/10/gnzfdm</u>

# Reconstruction

## Exist plant based

+++

Build model from existing plants, by photos or 3D scanning devices





#### Cheap but need quality control

11

#### Image based reconstruction

[1] Kochi, N., Isobe, S., Hayashi, A., Kodama, K., Tanabata, T., Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization Kintetsu-Kasumigaseki Bldg., 3-5-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan, R&D Initiative, Chuo University, Tokyo, Japan, Kazusa DNA Research Institute, Kisarazu, Japan, 2021. Introduction of All-Around 3D Modeling Methods for Investigation of Plants. IJAT 15, 301–312. <a href="https://doi.org/10/qpdm58">https://doi.org/10/qpdm58</a>

# **1.4 Research object**

# Modeling

Non-exist plant based

Flexible to adjust but not "real" plants

Reconstruction

Exist plant based

Real plants but not flexible to adjust

Adjustable real plants?

# Methods & 02 Results

# 2.1 Collecting "real" maize by reconstruction

#### 3D reconstruction platforms



# 2.1 Collecting "real" maize by reconstruction

Obtained time-series "real" maize point cloud



## Published maize model



Proper maize model unit – phytomer [1]

## Method of maize leaf shape description [2]

[1] Wen, et.al., 2021. 3D phytomer-based geometric modelling method for plants—the case of maize. AoB PLANTS 13, plab055. <u>https://doi.org/10.1093/aobpla/plab055</u> [2] Liu, et. al., 2021. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytol 232, 941–956. <u>https://doi.org/10.1111/nph.17611</u>

Implementation in Blender



Geometry Node Graph (parts)

Maize phytomer in Blender

## Control models by parameters



#### Batch loading skeletons to get mesh models



#### Pick each leaf

## Control models by parameters

| V 🕄 PhytomerGeoNode  | 🏹 🔚 📮 🔯 🗸 🗙                 |   |
|----------------------|-----------------------------|---|
| ]-√ InterNodeGN      | 55 🗘 🗗                      |   |
| leaf midrib          | KD580-0730_phytomer4_midrib | × |
| leaf edge1           | KD580-0730_phytomer4_edge1  | × |
| leaf edge2           | KD580-0730_phytomer4_edge2  | x |
| random shift         | 0.000                       |   |
| leaf interp num      | 106                         |   |
| leaf root position   | -0.001                      |   |
|                      | 0.007                       |   |
|                      | 0.197                       |   |
| leaf root offset X   | 0 m                         |   |
| Y                    | 0 m                         |   |
| Z                    | 0 m                         | • |
| leaf rotation X      | 0°                          |   |
| ř<br>7               | 0°                          |   |
| Leaf scale           | 1 000                       | - |
|                      | 1.000                       |   |
|                      | 1.000                       |   |
| stem top position    | 0.001                       |   |
|                      | -0.004                      |   |
|                      | 0.241                       |   |
| stem top radius      | 0.011                       |   |
| stem bottom position | 0.001                       |   |
|                      | -0.003                      |   |
|                      | 0.132                       |   |
| stem bottom radius   | 0.012                       |   |
| > Output Attributes  |                             |   |



# Summary



# Thank you



⊠: <u>haozhou-wang@outlook.com</u>