Estimate Optimal Harvest Time by Cross-scale Assimilated Digital Broccoli Farmland

Haozhou WANG, Tang LI, Erika NISHIDA, Yuya FUKANO, Yoichiro KATO, Wei GUO U. Tokyo

haozhou-wang@outlook.com

guowei@g.ecc.u-tokyo.ac.jp

U. Chiba

Background

In field food loss of fresh broccoli caused by non-standard shipping size is a common problem nowadays, which is mainly affected by non-proper harvesting time. A proper harvesting time means the maximum the proportion of standard shipping size, hard to estimate by conventional method.

Contribution

Propose a solution to predict the proper harvesting time.

• Build digital twin of 7000+ broccoli from individual to whole field.

2 Calculate the cross-scale assimilated size of broccoli.

OCalculate cross-scale assimilated size

3 Predict the broccoli size by growth model.

Predict profits by market price and growth model.

O Digital twin of in-field grown broccoli

Head identification & segmentation ID transferring to raw image Segment result Select the closest one < 1500 px → DOM broccoli ID

O Size prediction by growth model

id | T

1 0

0+ΔT₂

0+∆T₁

0

3 0

Model definition

 $ln(HD) = a - b \cdot e^{-c \cdot T}$

May23

4.6

5.4

4.3

...

Model initialization

Field Measured Head Diameter (cm)

 ΔT_2

May21

3.1

4.5

2.3

By field measured data

ΔΤ

id

2

3

HD: head diameter *T*: Sum of daily average temperature

OIncome prediction model

Market survey and broccoli grading

Shipping standard in Japan other size can not be sold and wasted

Case 1: grades with largest difference ΔC_1

Case 2: grades with smallest

For this year:

May 18

2.3

3.2

1.1

Flight when broccoli size is visible (May 12), using model 1 get T_0 , and weather forecast ΔT and model 2 to predict size

id	UAV Measured Head Diameter (cm)							
	May 12	T ₀	May 13	ΔΤ ₁	May 14	ΔT_2		
1	4.3	21.0	+	21.0+ <mark>∆</mark> T ₁	•	$T_0 + \Delta T_1 + \Delta T_2$		
2	5.1	25.4	+	25.4+ <mark>∆</mark> T ₁	•	$T_0 + \Delta T_1 + \Delta T_2$		
3	4.2	20.8	+	20.8+ <mark>∆</mark> T ₁	•	$T_0 + \Delta T_1 + \Delta T_2$		

difference ΔC_2 L size =Case 1: Case 2: $2L = \$1 + \Delta C_1$ $2L = $1 + \Delta C_2$ $M = \$1 - \Delta C_1$ $M = \$1 - \Delta C_2$ M,L,2L

In this case, May 17 is the optimal harvest date

It can be more precise with time going (weather data & UAV measure iteration)