UAV-HiRAP:

(Unmanned Aerial Vehicles - High Resolution imagery Analysis Platform)

A novel method to improve landscape-level vegetation classification

and coverage fraction estimation with unmanned aerial vehicle platform

Haozhou WANG¹, Feng WANG^{1*}, Xueling YAO¹, Yue MU¹, Yongfei Bai^{2*}, Qi LU^{1*}

12th international Congress of Ecology

2017-08-22

¹Institute of Desertification Studies,-Chinese Academy of Forestry, Beijing 100091, China ²State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China 01 Background
02 Materials & Methods
03 Results & Discussion
04 Conclusion

CONTENTS

What is dryland?

Background

UI

What do we measure?

Diversity

How we measure commonly?

Image acquisition work

www.dji.com

—Satellite RS

- Ultrahigh resolution (0.5-10 cm/pixel)
- Time flexibility

-Ground survey

- Landscape scale (Faye et al., Methods in Ecology and Evolution, 2016)
- Labor save

Image processing work

1GB – 100GB

(Wallace et al., Forests, 2016)

---Difficulties

- Too large file size
- Too more human participation Batch processing (common GIS methods) Heavy image work

----Solution

• Combine with Artificial intelligence (Wang., Science, 2017)

Our work

Establish UAV + AI platform -> landscape plant fraction coverage calculation

Validate UAV results by ground survey data

Develop a simple model for optimizing the workload of ground vegetation survey.

Location

Otingdag Sandland, inner-Mongolia, China

Plot size

1km×1km (1km²)

Survey time

The UAV images 2013-06-09 The ground survey 2013-07 – 2013-08

Study Area Overview 2.1 1) Location 2) Landscape

Data sources 2.2 1) Aerial photograph

2) Investigation data

Process flow 2.3

2) Validation

3) Application

- LTBT- "Mapping Eagle" fixed wing UAV
- Canon 5D Mark II

Photo parameters

Resolution:
 0.1 m/pixel

Investigation data

- Number: 3953 Elm , 879 shrub-like Elm , 18798 shrubs.
- Parameters: X,Y grid, Height, DBH, crown diameter

Study Area Overview 2.1 1) Location

2) Landscape

Data sources 2.2

1) Aerial photograph 2) Investigation data

> Process flow 2.3

1) Classification

2) Validation

3) Application

Study Area Overview 1) Location

2) Landscape

Data sources 2.2 1) Aerial photograph 2) Investigation data

> Process flow Process flow2.31) Classification

2) Validation

3) Application

1. Use functions to expand color space

3. Build decision tree

4. Classify UAV image by decision tree model

Study Area Overview 1) Location

Data sources 2.2 1) Aerial photograph 2) Investigation data

Process flow 2.3

1) Classification

2) Validation

3) Application

02

Ground survey data								
No.	Х	Y	Long axis (m)	Short axis (m)	Kinds			
1	735.6471	579.4423	3	1.76	Tree			
2	736.2334	575.1919	3.23	2.3	Tree			
4833	729.3089	555.5778	1.77	0.9	Shrub			
23630	18,7447	500.5990	0.48	0.72	Shrub			

Х

shrub

tree

02

Study Area Overview 1) Location

2) Landscape

Data sources 2.2 1) Aerial photograph 2) Investigation data

Process flow 1) Classification

2) Validation

3) Application

02

(Vegetation coverage fraction, VCF)

VCF _{UAV} = 14.07% (as true value)

e.g.	[1m ×1m 2m × 2m 100m × 100m × 100					
	VCF Deviation			.		
Times	Num=10	Num=20	Num=30	Num=40		
1	10.1%	?	?	?		
2	13.8%	?	?	?		
96	7.8%	?	?	?		
97	15.9%	?	?	?		
98	16.9%	?	?	?		
99	9.6%	?	?	?		
100	16.7%	?	?	?		

03

Classification results Partial Application results

Plant map(from ground survey)

UAV image

UAV_tree + shrub

UAV_tree + shrub + grass

	Tree	Shrub	Grass		
VCE	4.87%	7.67%			
VCr _{ground}	12	-			
МОГ	14	46.12%			
VCr _{UAV}	60.19%				

03

Classification results Partial Application results

Length of small pieces decrease cause Scatters more discrete

Ground survey results are not exactly same to UAV results in details.

Scatters gathered most below 25%

- Partial VCFs are closed to global VCF (12-14%).
- Most sparse distribution fewer high-density cluster.

y=0.77x+0.04

y=0.77x+0.04

 $R^2 = 0.1965$

0.5

VFC_{measured}

R²=0.2553

0.5

VFC_{measured}

03

Classification results Partial Application results

03

- 1) With subplot **quantity increasing**, the **deviation** drops **down** quickly
- 2) If we decrease the confidence from 95% to 90%, the quantity of subplots decrease greatly.

With subplot **size increasing**, the minimum subplot **quantity decrease**.

- 1) Total survey area (A_{95%}) = subplot size × number = $x^2 \times y_{95\%} = x^2 \times \frac{k}{x+b} = \frac{kx^2}{(x+b)}$ (k, b>0), A_{95%} = $\frac{kx^2}{(x+b)}$ (k, b>0).
- 2) This means that to achieve the same accuracy, small-size subplots with high quantity
 V
 large-size subplots with low quantity.

We establish a high-resolution image analysis platform (UAV-HiRAP) to classify vegetation types and estimate coverage fraction at landscape-level with UAV by machine learning algorithm and parallel computing

Classification

Application

A simple model for optimizing the workload of vegetation survey has been generated.

Validation

The accuracy of new method has been validated by detailed ground-based data in elm sparse forest grassland

05 Acknowledgement

Thanks a lot for Institute of Desertification Studies, Chinese Academy of Forestry provides the internship opportunity for me.

)5 Acknowledgement

The field survey data could not be acquired without the assistance of all volunteers from The second phase of Chinese Grassland Hiking(华夏草原行)

Thanks for your attention