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* Clarify whose implementation was used 
For the regular credit portion, Eunbi was responsible for Dataset 1 and Dataset 2, while Eric 
handled Dataset 3 and Dataset 4. To verify the implementation, please refer to the folder named 
"Eunbi_Regular" for Datasets 1 and 2, and "Eric_Regular" for Datasets 3 and 4. 
All extra credit components were solely designed and implemented by Eunbi, and the 
corresponding code can be found in the "Eunbi_Extra" folder. 
 
* Dataset 1  
Since it takes a lot of time to load dataset from sklearn, in the datasets folder inside of “Eunbi 
Regular”, I load the dataset1 the same as other dataset using load_digits.py. 
 
Regular Credits 
1. Choose Algorithm and Why  
1-1. Choose Neural Network and Random Forest For Dataset 1, Why 
First, choose the Neural Network because its hidden layers can effectively learn complex 
nonlinear patterns within the data. Especially in high-dimensional pixel-based data, where 
feature interactions matter, a multi-layer Neural Network is well-suited to capture these 
dependencies.  
On the other hand, the Random Forest algorithm, which ensembles multiple decision trees, was 
chosen for its robustness against overfitting, interpretability, and minimal need for data 
preprocessing. Random Forest tends to perform well when many features are relatively 
independent, such as pixel values, and it is known for its strong performance across various 
classification tasks. 
 
1-2. Choose KNN Algorithm and Random Forest For Dataset 2, Why 
The Parkinson’s dataset exhibits a significant class imbalance, with positive cases accounting 
for approximately 75% of all samples. Given this imbalance, we selected the K-Nearest 
Neighbors (KNN) and Random Forest algorithms for evaluation. KNN, being a locality-based 
classifier, is particularly sensitive to imbalanced distributions, making it a valuable baseline for 
observing how such imbalance affects prediction performance. On the other hand, Random 
Forest utilizes bootstrapping and majority voting, which enables it to maintain relatively robust 
performance even in the presence of class imbalance. The two algorithms offer contrasting 
perspectives—sensitivity versus robustness—on imbalanced data, making them complementary 
choices for comprehensive evaluation. 
 
1-3. Choose kNN and Random Forest For Dataset 3, Why 
For the Rice dataset, we chose the kNN and RF algorithms due to their advantages and the 
given data. The data appears to be moderately balanced (a roughly 60/40 split among the two 
rice types), and is composed entirely of numbers. For this reason, I selected a kNN algorithm for 
its ability to cover distances well (with numeric entities) and for it being a simple model that has 
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the capability of discriminating between two classes. I also selected the random forest model for 
being able to handle well with numeric attributes and being able to find more complex patterns 
at a reasonable pace compared to other algorithms. 
 
1-4. Choose kNN and Random Forest For Dataset 4, Why 
The credit approval dataset appears to be close to balanced (a split of approximately 55/45), 
and is composed of both numeric and categorical features. We selected a random forest for its 
ability to accommodate multimodal forms of data. I also selected kNN for its simplicity and for it 
being good as a discriminator since the dataset deals with a lot of categorical features. 
 
 
2. Various Hyper-Parameter Settings Evaluation 
2-1. Dataset 1(Digits) - Random Forest 
Stopping Criteria : Minimal information gain = 0.00001 or Max depth = 5 

2-2. Dataset 1(Digits) - Neural Network 
Alpha size = 0.1 / Mini-Batch Gradient Descent (batch size = 64) / Stopping Criteria : m_size=50 

2-3. Dataset 2(Parkinsons) - KNN Algorithm 

 

Hyper Parameter Performance Evaluation 
ntree Accuracy F1 Score 

1 0.7499 0.7640 
5 0.8123 0.7550 

10 0.6806 0.7275 
20 0.8176 0.8553 
30 0.8504 0.8445 
40 0.9357 0.9246 
50 0.8823 0.8775 

Hyper Parameter Performance Evaluation 
Hidden Layer Regularization (Lambda) Accuracy F1 Score 
[64,32,16,8,4] 0.1 0.5250 0.4824 
[64,32,16,8,4] 0.001 0.6940 0.6517 
[64,32,16,8,4] 0.000001 0.7608 0.6321 
[64,32,16, 8] 0.1 0.9916 0.9914 
[64,32,16] 0.1 0.9944 0.9944 

[32] 0.000001 0.9945 0.9943 
[64] 0.000001 0.9972 0.9973 

Hyper Parameter Performance Evaluation 
k Accuracy F1 Score 
1 0.9381 0.9582 
3 0.9334 0.9557 
5 0.9037 0.9379 
9 0.8984 0.9346 

19 0.8670 0.9184 
39 0.8357 0.9005 
51 0.8002 0.8831 



2-4. Dataset 2(Parkinsons) - Random Forest 
Stopping Criteria : Minimal information gain = 0.00001 or Max depth = 5 

2-5. Dataset 3 (Rice) - kNN 

2-6. Dataset 3 (Rice) - Random Forest 

2-7. Dataset 4 (Credit Approval) - kNN 

 

 

Hyper Parameter Performance Evaluation 
ntree Accuracy F1 Score 

1 0.8046 0.8836 
5 0.8515 0.8943 

10 0.8826 0.9178 
20 0.8712 0.9094 
30 0.9076 0.9309 
40 0.9179 0.9369 
50 0.9082 0.9254 

Hyper Parameter Performance Evaluation 
k Accuracy F1 Score 
1 0.8806 0.9126 
3 0.9048 0.9074 
5 0.9048 0.9021 
9 0.9048 0.9076 

15 0.9073 0.9128 
19 0.9048 0.9100 
39 0.9128 0.9073 
51 0.9102 0.9073 

Hyper Parameter Performance Evaluation 
ntree Accuracy F1 Score 

5 0.9092 0.9074 
10 0.9110 0.9100 
20 0.9176 0.9162 
30 0.9179 0.9163 
50 0.9202 0.9187 

100 0.9223 0.9207 

Hyper Parameter Performance Evaluation 
k Accuracy F1 Score 
1 0.7261 0.8172 
3 0.8325 0.8630 
5 0.8174 0.8633 
7 0.8174 0.8939 
9 0.8174 0.8630 

19 0.8020 0.8351 
39 0.8020 0.8497 
51 0.8020 0.8351 



2-8. Dataset 4 (Credit Approval) - Random Forest 

 
 
3. Construct learning curves/graphs with best parameter 
3-1. Dataset1 - Neural Network 

 
The graph shows a steadily decreasing cost J as the number of training instances increases, 
which indicates that the neural network is successfully learning from the data. The curve follows 
an exponentially decaying pattern and appears to converge smoothly without signs of 
plateauing prematurely. This suggests that the optimization process is not getting stuck in a poor 
local minimum, and that the network generalizes well as more data is seen. Since the dataset 
contains only numerical attributes (pixel intensities), the neural network is well-suited for this 
type of input due to its ability to model complex, high-dimensional relationships effectively. 
 
3-2. Dataset1 - Random Forest 

 
In contrast, the Random Forest graph exhibits non-monotonic behavior. While accuracy 
generally improves as the number of trees increases—peaking around ntrees=40—it fluctuates 

 

Hyper Parameter Performance Evaluation 
ntree Accuracy F1 Score 

5 0.8300 0.8291 
10 0.8406 0.8419 
20 0.8419 0.8412 
30 0.8545 0.8543 
40 0.8606 0.8605 
50 0.8588 0.8587 



at smaller values of ntrees and slightly declines at ntrees = 50. This pattern indicates that 
initially, additional trees help reduce bias and improve performance, but beyond a certain point, 
the ensemble begins to overfit or adds little new information, possibly due to redundancy among 
trees. This behavior reflects the bias–variance tradeoff, where too many trees can increase 
variance if not properly regularized. Despite this, Random Forest still performs well on this 
dataset, which is expected because the input features are purely numerical and well-suited to 
decision tree splits. 
 
3-3. Dataset2 - KNN Algorithm 

 
The KNN graph shows that the model performs best at smaller values of k, with accuracy 
gradually decreasing as k increases. This behavior is typical in datasets where local 
neighborhood information is highly relevant for classification. Parkinson’s dataset consists of 
only numerical biomedical voice features, which makes distance-based methods like KNN 
suitable. However, when kkk increases too much, the algorithm becomes overly generalized 
and less sensitive to subtle distinctions between healthy and diseased voices. Additionally, the 
wide error bars at higher kkk values suggest inconsistency across folds, likely due to class 
imbalance in the dataset. 
 
3-4. Dataset2 - Random Forest 

 
The Random Forest graph shows a clear trend of performance improvement with more trees, 
stabilizing around ntrees=40. This indicates the model benefits from ensemble learning, with 
more trees reducing variance and improving generalization. Since all features in the Parkinson’s 
dataset are numerical, decision tree splits can effectively capture the thresholds between the 

 



two classes (healthy vs diseased). Random Forest amplifies this advantage through feature 
bagging and bootstrap aggregation. Importantly, Random Forest remains robust even under 
class imbalance, which is a key challenge in the Parkinson’s dataset (where class 1 dominates). 
This is because decision trees within the forest can focus on different subsets of the data, and 
class weight balance can implicitly emerge across trees. In contrast, KNN makes predictions 
based on local majority voting, which can be easily biased when one class dominates, 
especially in small neighborhoods. This makes Random Forest a more stable choice for 
imbalanced binary classification tasks. 
 
3-5. Dataset3 - kNN 

 
Here, we can observe that there is a little bit of fluctuation of both the accuracy and F1 values 
up to k=51; keep in mind that these fluctuations are still relatively small, with the greatest 
difference being about 0.03, and the average difference between the values being less than 
0.01 difference. This would suggest that even at k=51, the model would still be roughly as 
competitive as a model at, say, k=29, and even a few of the lower k-value models seem to have 
slightly less accuracy than when k is in the range of 30-50. Indeed, the decrease in accuracy 
and F1 values is only more pronounced and visible by the time k reaches the range of 150. That 
being said, because the difference in accuracies/F1-Scores between lower and higher k values 
is within just 2%, as well as to ensure that the model doesn’t rely on too many of its neighbors, I 
propose that the best model has a k=15, though I would also believe that choosing any model 
with a k greater than 15 within the given sample would also be acceptable; just remember to 
favor simpler models over ones that rely on more neighbors. 
 
3-6. Dataset3 - Random Forest 

 

 



Here, we can observe that even from a quick search for the number of decision trees, the 
amount of improvement regarding the F1 score changes quite a bit. Although the actual optimal 
number of trees possibly lies somewhere between 50 and 100 trees (an increase of 50 trees 
yields an improvement of only about 0.2%), out of the different hyperparameters tested, the 100 
tree RF model did the best for both accuracy and F1, and thus would make for the best model to 
choose. The reason for needing so many trees and not seeing an outright stagnation in 
performance can be attributed to the fact that the RF has many different sets of data to consider, 
as opposed to some of the other datasets with only a few hundred rows worth of data. 
 
3-7. Dataset4 - kNN 

 
Unlike in the kNN graph of 3-5, we can see a much more pronounced decline as we increase k. 
Of course, these values will continue to decrease as k increases beyond k=51. From this, I 
would say that the most preferable model is the k=7 model due to achieving stronger results 
than most other models (particularly in the F1 score) while being a more minimal model than 
others. I would also consider k values between 3 and 11 to also be acceptable choices for this 
type of model. When we increase k, the model becomes more generalized but prone to 
underfitting - it’s less noticeable here primarily due to the testing sizes being relatively small due 
to the stratified k-folds making testing sets very small. 
 
3-8. Dataset4 - Random Forest 

 
Here, we can observe the results start to stabilize around the 40-50 trees mark. In this case, we 
can say that although results may improve slightly beyond 50 estimators, we also want to avoid 
overfitting, in which case the 40 tree model arguably does best, as it has the best accuracy and 

 



F1 metrics than any other model, while being as competitive as the 50 tree model. If one is very 
concerned about overfitting, I would also consider the 30 tree model as acceptable. 
 
 
4. Summarize 
4-1. Performance of Each Algorithm 

4-2. Which Algorithm had the highest performance 
If I have to choose one algorithm, I will choose a random forest because of our implementation 
result. In general, we found that the Random Forest algorithm tended to give consistently 
high-quality performance across all datasets. As shown in Table 4-1 and Extra Credit Question 
1, it consistently achieved both accuracy and F1-scores above 85%, making it a reliable choice 
for various applications. Its ensemble structure and ability to handle both numerical and 
categorical features contributed to its robustness, especially on structured datasets like Credit 
Approval and Rice. 
Neural Networks were also strong contenders. They performed exceptionally well on the Digits 
dataset, likely due to its high-dimensional, clean, and well-separated pixel features. However, 
Neural Networks tended to struggle on smaller or noisier datasets like Parkinsons or Credit 
Approval, demonstrating their sensitivity to sample size and feature complexity. While they can 
be very powerful, they also require more data and tuning to perform reliably. 
K-Nearest Neighbors (KNN), although conceptually simple and intuitive, generally produced the 
weakest performance. It showed relatively strong results on well-balanced, numeric datasets 
such as Rice, but suffered more on datasets with class imbalance or mixed feature types, due to 
its reliance on distance metrics and local neighborhood voting. 
 
 
 
 
 
 
Extra Credits 
Extra 1. Additional Algorithm 
Etra 1-1. Evaluation 

 

 Dataset 1 
(Digits) 

Dataset 2 
(Parkinsons) 

Dataset 3 
(Rice) 

Dataset 4 
(Credit) 

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score 
KNN Algorithm   0.9334 0.9557 0.9073 0.9128 0.8174 0.8939 
Random Forest 0.9357 0.9246 0.9179 0.9369 0.9223 0.9207 0.8606 0.8605 
Neural Network 0.9972 0.9973       

 Dataset 1 
(Digits) 

Dataset 2 
(Parkinsons) 

Dataset 3 
(Rice) 

Dataset 4 
(Credit) 

 Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score 
Decision Tree 0.9751 0.9864       

Random Forest         
Neural Network   0.7541 0.8597 0.9286 0.9378 0.8393 0.8240 



Extra 1-2. Cost J/Graph 

 
 
Extra 2. New Challenging Dataset  
Extra 2-1. Which Dataset and Why 
For the Extra Credit task, I chose to work with the UCI Heart Disease dataset because it fully satisfies the 
criteria specified in the assignment. Most importantly, this dataset features a multi-class target variable, 
where the label column contains more than two categories (e.g., 0 to 4), each representing a different 
level of heart disease severity. This aligns with the assignment’s requirement that the outcome should not 
be binary but instead involve multiple classes. In addition to the target variable structure, this dataset 
includes both numerical and categorical features, such as age, cholesterol level, and maximum heart rate 
(numerical), as well as chest pain type, sex, and exercise-induced angina (categorical). This variety 
allows for a comprehensive preprocessing pipeline and testing of classification algorithms under realistic 
conditions. The dataset also has an appropriate size — 303 samples with 13 features — which is large 
enough for meaningful analysis using techniques like stratified k-fold cross-validation but small enough to 
be manageable for building custom models from scratch. Furthermore, the UCI Heart Disease dataset is 
a widely recognized benchmark in the machine learning community, which adds credibility and 
comparability to any evaluation performed on it. To check the implementation dataset, go to the “dataset” 
folder and run “load_heart.py” then you will get the “heart_disease.csv” file to use in the algorithms below. 
 

 

 Dataset 1 - KNN Algorithm Dataset 2 - Neural Network 
Hyper Param X Lambda=0.1, Hidden Layer=[22,64,32,1] 
Other Param Min information gain=0.00001 or Max depth=5 Alpha=0.1, Mini-Batch(32), Stop=m size(2000) 

Graph 

 
 

 Dataset 3 - Neural Network Dataset 4 - Neural Network 
Hyper Param Lambda=1e-6, Hidden Layer=[64] Lambda=1e-6, Hidden Layer=[64,32,16,8] 
Other Param Alpha=0.1, Mini-Batch(128), Stop=m size(100) Alpha=0.1, Mini-Batch(128), Stop=m size(2000) 

Graph 

  



Extra 2-2. Evaluation 

KNN Algorithm 

 
Random Forest 

 
 
The UCI Heart Disease dataset includes both numerical and categorical features with a 
multi-class target, making it well-suited for algorithms like K-Nearest Neighbors (KNN) and 
Random Forest. KNN leverages local similarity, while Random Forest is robust to diverse 
feature types and works well on moderately sized datasets. Both are interpretable, efficient, and 
effective without requiring extensive preprocessing. In contrast, a Neural Network was not 
chosen due to the dataset's small size, which increases the risk of overfitting, and because 
neural networks demand complex training procedures and hyperparameter tuning. Given the 
nature of the dataset and the goals of this project, KNN and Random Forest were appropriate 
choices, while a Neural Network would have been unnecessarily complex. The UCI Heart 
Disease dataset is small and imbalanced, with most labels being class 0. Although both KNN 
and Random Forest showed strong overall performance, the class imbalance in the dataset 
could skew predictions toward the majority class. KNN performed better in terms of F1-score 
(0.5411) because it captures local patterns and can better detect minority classes. Random 
Forest achieved similar accuracy (0.8091) but had a lower F1-score (0.3794) due to its 
tendency to favor the majority class. This shows that KNN handled the class imbalance more 
effectively for this dataset. 

 

 Hyperparameter Accuracy F1-Score 
KNN Algorithm k=7 0.8124 0.5411 
Random Forest ntrees=30 0.8091 0.3794 



Extra 3. Ensemble Algorithm 
Extra 3-1. Algorithm Structure 
I designed and implemented a custom ensemble learning algorithm that combines the three 
algorithms used in the previous sections: Neural Network, Random Forest, and K-Nearest 
Neighbors (KNN). For each dataset, first perform 10-fold stratified cross-validation. Then, within 
each fold, obtain model-specific predictions by calling the following three functions: 
run_knn_single_fold(), run_tree_single_fold(), run_nn_single_fold(). Each of these three models 
makes independent predictions on the test split. For every test instance, then apply majority 
voting across the three model predictions to generate the final ensemble prediction. Finally, the 
ensemble predictions are compared to the true labels to evaluate accuracy and F1 score. 
 
Extra 3-2. Hyperparameter Settings 
When run this ensemble algorithm, other dataset accuracy and f1 score are both over 90% 
except dataset 1. To make an algorithm working well with any dataset, set this algorithm’s 
hyperparameter the same as the best hyperparameter in the previous regular points 2 dataset1 
for random forest and neural network. An Imbalanced dataset like dataset 2 needs a small 
nearest-k value so I choose k=5 which can be a reasonable number for both imbalance and 
balance dataset. 
 
Extra 3-3. Code Implementation 
To run the ensemble algorithm, please navigate to the ensemble_algorithm folder and execute 
the script en.py.This script automatically runs the ensemble on all four datasets (digits, 
parkinsons, rice, credit_approval) and outputs accuracy and F1 score for each. The results are 
saved as Excel files (e.g., ensemble_digits_metrics.xlsx), which can be used for reporting. 
 
Extra 3-4. Evaluation 

 Accuracy F1-Score 
Dataset 1 (Digits) 0.6750 0.6863 

Dataset 2 (Parkinsions) 0.9692 0.9796 
Dataset 3 (Rice) 0.9850 0.9869 

Dataset 4 (Credit Approval) 0.9234 0.9167 
The ensemble algorithm achieved strong performance on most datasets, with over 90% 
accuracy and F1-score except for the Digits dataset. Digits involves a 10-class classification 
task with high-dimensional pixel features, which makes it more challenging for KNN and shallow 
neural networks. In contrast, Parkinsons and Rice datasets are binary classification problems 
with well-separated numerical features, allowing the ensemble to perform exceptionally well. 
Even the Credit Approval dataset, which contains mixed-type attributes, was handled effectively 
thanks to normalization and one-hot encoding, resulting in stable and reliable predictions. 
 
 
Extra 4. New Type of Algorithm 
Extra 4-1. Algorithm Structure 
This algorithm implements multinomial linear regression which was chosen over binary logistic 
regression because the digits dataset contains 10 distinct classes (digits 0 to 9). Binary logistic 

 



regression can only handle two classes, however, multinomial regression learns a separate 
weight vector for each class and predicts the class with the highest computed score (logit). 
It begins by preprocessing the dataset: numeric input variables are normalized, and categorical 
variables are converted into numerical form through one-hot encoding. The training process 
uses gradient descent to iteratively update the model’s weights and biases. In each iteration (or 
epoch), the algorithm computes predictions for all training samples, compares them to the true 
labels, calculates the loss (based on the difference), and adjusts the weights in a direction that 
minimizes this loss. If the change in loss between iterations becomes negligible, the training 
stops. The structure of this training process mirrors the classic implementation of linear 
regression via gradient descent, as outlined in the reference lecture15-slide116. For each 
weight, the algorithm calculates a gradient and updates it using the learning rate. The code also 
includes gradient clipping to prevent instability from excessively large updates. After training, the 
model is evaluated using 10-fold stratified cross-validation to ensure robust performance. For 
each fold, the model’s predictions are compared to the actual labels, and two key metrics are 
computed: accuracy and macro F1 score, which is appropriate for multi-class evaluation. The 
average performance across all folds is reported, and the results are saved to a text file. 
 
Extra 4-2. Hyperparameter Settings 
Learning_rate = 0.0001 determines the step size taken during gradient descent. A value too 
high may cause the model to diverge, while a value too low could result in slow convergence. 
Epochs = 1000 specifies the number of times the entire training dataset is used for updating the 
model parameters. Higher values can improve learning but also increase training time. epsilon = 
1e-6 used as a convergence threshold. If the change in loss between consecutive epochs is 
smaller than this value, the algorithm stops early to save computation. K_FOLD_SIZE = 10 
controls the number of folds in stratified cross-validation. Used 10-fold CV to ensure reliable 
evaluation, especially on imbalanced datasets, by preserving class distribution in each split. 
 
Extra 4-3. Code Implementation 
To run the multinomial linear regression algorithm, navigate to the linear_regression folder and 
execute the script reg.py.This script automatically runs the ensemble on all four datasets (digits, 
parkinsons, rice, credit_approval) and outputs accuracy and F1 score for each. The results are 
saved as text files “linear_regression_results.txt”, which can be used for reporting. 
 
Extra 4-4. Evaluation 

In the evaluation of the multinomial linear regression model across four datasets, we observed 
varying levels of performance depending on the nature of each dataset. 
For the Digits dataset, the model achieved excellent results, with an accuracy of 93.10% and an 
F1 score of 92.35%. This dataset contains clean, high-dimensional pixel features that represent 
handwritten digits from 0 to 9. The class boundaries are well-separated, and the data is 

 

 Accuracy F1-Score 
Dataset 1 (Digits) 0.9310  0.9235 

Dataset 2 (Parkinsions) 0.7450 0.4259 
Dataset 3 (Rice) 0.9152 0.9137 

Dataset 4 (Credit Approval) 0.7978 0.7868 



balanced, making it an ideal case for a linear model. As a result, the model was able to 
generalize effectively and consistently classify digits across all classes. 
In contrast, the Parkinsons dataset showed relatively lower performance, especially in terms of 
F1 score. While the accuracy reached 74.50%, the F1 score dropped to 42.59%. This large gap 
suggests that the dataset may be imbalanced or that some classes are harder to distinguish. 
Given the small size and subtle variations in features, the model likely struggled with false 
negatives, leading to lower recall. This demonstrates a limitation of using simple linear models 
on small and noisy biomedical datasets. 
The Rice dataset exhibited strong results, with an accuracy of 91.52% and an F1 score of 
91.37%. This dataset is known to be clean, structured, and linearly separable, which aligns well 
with the assumptions of linear regression. The high and balanced scores indicate that the model 
performed well across both classes and was not biased toward either. 
Lastly, for the Credit Approval dataset, the model showed solid generalization despite 
challenges. This dataset includes a mix of numeric and categorical variables, and it may contain 
noise or missing values. Nonetheless, the model achieved an accuracy of 79.78% and an F1 
score of 78.68%. These results suggest that the preprocessing steps—such as normalization 
and one-hot encoding—effectively prepared the data, allowing the model to handle the 
complexity and make reliable predictions. 
Overall, the evaluation highlights that the performance of multinomial linear regression is 
strongly influenced by the structure, balance, and clarity of the dataset. Clean and separable 
datasets like Digits and Rice yield high scores, while more ambiguous or imbalanced datasets 
like Parkinsons present challenges that linear models alone cannot fully overcome. 
In addition to class imbalance, the relatively low F1-score on the Parkinsons dataset can also be 
attributed to the inherent limitations of multinomial linear regression. As a linear model, it 
assumes that the decision boundaries between classes are linearly separable, which may not 
hold true in biomedical datasets like Parkinsons that contain subtle and nonlinear patterns in 
voice features. These nonlinear interactions cannot be captured by a linear hypothesis, leading 
to misclassifications, particularly in borderline or overlapping cases.  
 
 
 

 


