COMPSCI 589 - Machine Learning
Final Project_Spring 2025
Eunbi Yoon, Eric Nunes

* Clarify whose implementation was used

For the regular credit portion, Eunbi was responsible for Dataset 1 and Dataset 2, while Eric
handled Dataset 3 and Dataset 4. To verify the implementation, please refer to the folder named
"Eunbi_Regular" for Datasets 1 and 2, and "Eric_Regular" for Datasets 3 and 4.

All extra credit components were solely designed and implemented by Eunbi, and the
corresponding code can be found in the "Eunbi_Extra" folder.

* Dataset 1
Since it takes a lot of time to load dataset from sklearn, in the datasets folder inside of “Eunbi
Regular”, | load the dataset1 the same as other dataset using load_digits.py.

Regular Credits

1. Choose Algorithm and Why

1-1. Choose Neural Network and Random Forest For Dataset 1, Why

First, choose the Neural Network because its hidden layers can effectively learn complex
nonlinear patterns within the data. Especially in high-dimensional pixel-based data, where
feature interactions matter, a multi-layer Neural Network is well-suited to capture these
dependencies.

On the other hand, the Random Forest algorithm, which ensembles multiple decision trees, was
chosen for its robustness against overfitting, interpretability, and minimal need for data
preprocessing. Random Forest tends to perform well when many features are relatively
independent, such as pixel values, and it is known for its strong performance across various
classification tasks.

1-2. Choose KNN Algorithm and Random Forest For Dataset 2, Why

The Parkinson’s dataset exhibits a significant class imbalance, with positive cases accounting
for approximately 75% of all samples. Given this imbalance, we selected the K-Nearest
Neighbors (KNN) and Random Forest algorithms for evaluation. KNN, being a locality-based
classifier, is particularly sensitive to imbalanced distributions, making it a valuable baseline for
observing how such imbalance affects prediction performance. On the other hand, Random
Forest utilizes bootstrapping and majority voting, which enables it to maintain relatively robust
performance even in the presence of class imbalance. The two algorithms offer contrasting
perspectives—sensitivity versus robustness—on imbalanced data, making them complementary
choices for comprehensive evaluation.

1-3. Choose kNN and Random Forest For Dataset 3, Why

For the Rice dataset, we chose the kNN and RF algorithms due to their advantages and the
given data. The data appears to be moderately balanced (a roughly 60/40 split among the two
rice types), and is composed entirely of numbers. For this reason, | selected a kNN algorithm for
its ability to cover distances well (with numeric entities) and for it being a simple model that has

mailto:eenunes@umass.edu

the capability of discriminating between two classes. | also selected the random forest model for
being able to handle well with numeric attributes and being able to find more complex patterns
at a reasonable pace compared to other algorithms.

1-4. Choose kNN and Random Forest For Dataset 4, Why

The credit approval dataset appears to be close to balanced (a split of approximately 55/45),
and is composed of both numeric and categorical features. We selected a random forest for its
ability to accommodate multimodal forms of data. | also selected kNN for its simplicity and for it
being good as a discriminator since the dataset deals with a lot of categorical features.

2. Various Hyper-Parameter Settings Evaluation
2-1. Dataset 1(Digits) - Random Forest
Stopping Criteria : Minimal information gain = 0.00001 or Max depth =5

Hyper Parameter Performance Evaluation
ntree Accuracy F1 Score
1 0.7499 0.7640
5 0.8123 0.7550
10 0.6806 0.7275
20 0.8176 0.8553
30 0.8504 0.8445
40 0.9357 0.9246
50 0.8823 0.8775

2-2. Dataset 1(Digits) - Neural Network
Alpha size = 0.1 / Mini-Batch Gradient Descent (batch size = 64) / Stopping Criteria : m_size=50

Hyper Parameter Performance Evaluation
Hidden Layer Regularization (Lambda) Accuracy F1 Score
[64,32,16,8,4] 0.1 0.5250 0.4824
[64,32,16,8,4] 0.001 0.6940 0.6517
[64,32,16,8,4] 0.000001 0.7608 0.6321
[64,32,16, 8] 0.1 0.9916 0.9914
[64,32,16] 0.1 0.9944 0.9944
[32] 0.000001 0.9945 0.9943
[64] 0.000001 0.9972 0.9973
2-3. Dataset 2(Parkinsons) - KNN Algorithm
Hyper Parameter Performance Evaluation
k Accuracy F1 Score
1 0.9381 0.9582
3 0.9334 0.9557
5 0.9037 0.9379
9 0.8984 0.9346
19 0.8670 0.9184
39 0.8357 0.9005
51 0.8002 0.8831

2-4. Dataset 2(Parkinsons) - Random Forest

Stopping Criteria : Minimal information gain = 0.00001 or Max depth =5

Hyper Parameter

Performance Evaluation

ntree Accuracy F1 Score
1 0.8046 0.8836
5 0.8515 0.8943
10 0.8826 0.9178
20 0.8712 0.9094
30 0.9076 0.9309
40 0.9179 0.9369
50 0.9082 0.9254

2-5. Dataset 3 (Rice) - kNN

Hyper Parameter

Performance Evaluation

k Accuracy F1 Score
1 0.8806 0.9126
3 0.9048 0.9074
5 0.9048 0.9021
9 0.9048 0.9076
15 0.9073 0.9128
19 0.9048 0.9100
39 0.9128 0.9073
51 0.9102 0.9073

2-6. Dataset 3 (Rice) - Random Fore

st

Hyper Parameter

Performance Evaluation

ntree Accuracy F1 Score
5 0.9092 0.9074
10 0.9110 0.9100
20 0.9176 0.9162
30 0.9179 0.9163
50 0.9202 0.9187
100 0.9223 0.9207

2-7. Dataset 4 (Credit Approval) - kNN

Hyper Parameter

Performance Evaluation

k Accuracy F1 Score
1 0.7261 0.8172
3 0.8325 0.8630
5 0.8174 0.8633
7 0.8174 0.8939
9 0.8174 0.8630
19 0.8020 0.8351
39 0.8020 0.8497
51 0.8020 0.8351

2-8. Dataset 4 (Credit Approval) - Random Forest

Hyper Parameter Performance Evaluation
ntree Accuracy F1 Score
5 0.8300 0.8291
10 0.8406 0.8419
20 0.8419 0.8412
30 0.8545 0.8543
40 0.8606 0.8605
50 0.8588 0.8587

3. Construct learning curves/graphs with best parameter
3-1. Dataset1 - Neural Network

0.14

0.12

T T T T T T T T T
[} 2000 4000 6000 8000 10000 12000 14000 16000
Training Instances (m x Train Set)

The graph shows a steadily decreasing cost J as the number of training instances increases,
which indicates that the neural network is successfully learning from the data. The curve follows
an exponentially decaying pattern and appears to converge smoothly without signs of
plateauing prematurely. This suggests that the optimization process is not getting stuck in a poor
local minimum, and that the network generalizes well as more data is seen. Since the dataset
contains only numerical attributes (pixel intensities), the neural network is well-suited for this
type of input due to its ability to model complex, high-dimensional relationships effectively.

3-2. Dataset1 - Random Forest

0.90 1

0.85 A

Accuracy
o
o0
o

0.75 4

0.70 4

0 10 20 30 40 50
ntrees

In contrast, the Random Forest graph exhibits non-monotonic behavior. While accuracy
generally improves as the number of trees increases—peaking around ntrees=40—it fluctuates

at smaller values of ntrees and slightly declines at ntrees = 50. This pattern indicates that
initially, additional trees help reduce bias and improve performance, but beyond a certain point,
the ensemble begins to overfit or adds little new information, possibly due to redundancy among
trees. This behavior reflects the bias—variance tradeoff, where too many trees can increase
variance if not properly regularized. Despite this, Random Forest still performs well on this
dataset, which is expected because the input features are purely numerical and well-suited to
decision tree splits.

3-3. Dataset2 - KNN Algorithm

1.00 A

4

©

vl
|

o

©

o
|

o

=3}

@
L

(Accuracy over testing data

4
©
=}

(3 1IO 2'0 3b 4|0 56
(Value of k)

The KNN graph shows that the model performs best at smaller values of k, with accuracy
gradually decreasing as k increases. This behavior is typical in datasets where local
neighborhood information is highly relevant for classification. Parkinson’s dataset consists of
only numerical biomedical voice features, which makes distance-based methods like KNN
suitable. However, when kkk increases too much, the algorithm becomes overly generalized
and less sensitive to subtle distinctions between healthy and diseased voices. Additionally, the
wide error bars at higher kkk values suggest inconsistency across folds, likely due to class
imbalance in the dataset.

3-4. Dataset2 - Random Forest
0.92 4

0.90

0.80 . r ! T T
0 10 20 30 40 50

ntrees
The Random Forest graph shows a clear trend of performance improvement with more trees,
stabilizing around ntrees=40. This indicates the model benefits from ensemble learning, with
more trees reducing variance and improving generalization. Since all features in the Parkinson’s

dataset are numerical, decision tree splits can effectively capture the thresholds between the

two classes (healthy vs diseased). Random Forest amplifies this advantage through feature
bagging and bootstrap aggregation. Importantly, Random Forest remains robust even under
class imbalance, which is a key challenge in the Parkinson’s dataset (where class 1 dominates).
This is because decision trees within the forest can focus on different subsets of the data, and
class weight balance can implicitly emerge across trees. In contrast, KNN makes predictions
based on local majority voting, which can be easily biased when one class dominates,
especially in small neighborhoods. This makes Random Forest a more stable choice for
imbalanced binary classification tasks.

3-5. Dataset3 - kNN

Rice Results: Accuracy + F1 Score vs k

0915 F1 Score

09104 //H\/_'_\ \—J/\
0.905 4 -./\ M
£ 0.900

0.895
0.890
0.885 4

0.880 4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
K Value

Here, we can observe that there is a little bit of fluctuation of both the accuracy and F1 values
up to k=51; keep in mind that these fluctuations are still relatively small, with the greatest
difference being about 0.03, and the average difference between the values being less than
0.01 difference. This would suggest that even at k=51, the model would still be roughly as
competitive as a model at, say, k=29, and even a few of the lower k-value models seem to have
slightly less accuracy than when k is in the range of 30-50. Indeed, the decrease in accuracy
and F1 values is only more pronounced and visible by the time k reaches the range of 150. That
being said, because the difference in accuracies/F1-Scores between lower and higher k values
is within just 2%, as well as to ensure that the model doesn’t rely on too many of its neighbors, |
propose that the best model has a k=15, though | would also believe that choosing any model
with a k greater than 15 within the given sample would also be acceptable; just remember to
favor simpler models over ones that rely on more neighbors.

3-6. Dataset3 - Random Forest

Rice: F1 Score vs Number of Trees

0.914

F1 Score (10-Fold CV)
o
[}
=
~

0.910 1

0.908

— T T T T
5 10 20 30 50 100
Number of Trees

Here, we can observe that even from a quick search for the number of decision trees, the
amount of improvement regarding the F1 score changes quite a bit. Although the actual optimal
number of trees possibly lies somewhere between 50 and 100 trees (an increase of 50 trees
yields an improvement of only about 0.2%), out of the different hyperparameters tested, the 100
tree RF model did the best for both accuracy and F1, and thus would make for the best model to
choose. The reason for needing so many trees and not seeing an outright stagnation in
performance can be attributed to the fact that the RF has many different sets of data to consider,
as opposed to some of the other datasets with only a few hundred rows worth of data.

3-7. Dataset4 - kNN

Credit Results: Accuracy + F1 Score vs k

0.900
0.875 4
0.850
0.825 4

@

g
% 0.800 4 X 2

0.775 4

0.750 4

0.725 4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
K Value

Unlike in the kNN graph of 3-5, we can see a much more pronounced decline as we increase k.
Of course, these values will continue to decrease as k increases beyond k=51. From this, |
would say that the most preferable model is the k=7 model due to achieving stronger results
than most other models (particularly in the F1 score) while being a more minimal model than
others. | would also consider k values between 3 and 11 to also be acceptable choices for this
type of model. When we increase k, the model becomes more generalized but prone to
underfitting - it’s less noticeable here primarily due to the testing sizes being relatively small due
to the stratified k-folds making testing sets very small.

3-8. Dataset4 - Random Forest

Credit Approval: F1 Score vs Number of Trees

0.860

0.855 4

o
)
o
=1

F1 Score (10-Fold CV)
o o
£y o
- -~
o w

0.835

0.830

° 1ID Zb Number of‘i:l"ees 4ID Sb
Here, we can observe the results start to stabilize around the 40-50 trees mark. In this case, we
can say that although results may improve slightly beyond 50 estimators, we also want to avoid
overfitting, in which case the 40 tree model arguably does best, as it has the best accuracy and

F1 metrics than any other model, while being as competitive as the 50 tree model. If one is very
concerned about overfitting, | would also consider the 30 tree model as acceptable.

4. Summarize
4-1. Performance of Each Algorithm

Neural Network

0.9972

0.9973

Dataset 1 Dataset 2 Dataset 3 Dataset 4
(Digits) (Parkinsons) (Rice) (Credit)
Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score |Accuracy|F1-Score
KNN Algorithm 0.9334 0.9557 0.9073 0.9128 | 0.8174 | 0.8939
Random Forest 0.9179 0.9369 0.9223 0.9207 | 0.8606 | 0.8605

4-2. Which Algorithm had the highest performance

If I have to choose one algorithm, | will choose a random forest because of our implementation
result. In general, we found that the Random Forest algorithm tended to give consistently
high-quality performance across all datasets. As shown in Table 4-1 and Extra Credit Question
1, it consistently achieved both accuracy and F1-scores above 85%, making it a reliable choice
for various applications. Its ensemble structure and ability to handle both numerical and
categorical features contributed to its robustness, especially on structured datasets like Credit
Approval and Rice.

Neural Networks were also strong contenders. They performed exceptionally well on the Digits
dataset, likely due to its high-dimensional, clean, and well-separated pixel features. However,
Neural Networks tended to struggle on smaller or noisier datasets like Parkinsons or Credit
Approval, demonstrating their sensitivity to sample size and feature complexity. While they can
be very powerful, they also require more data and tuning to perform reliably.

K-Nearest Neighbors (KNN), although conceptually simple and intuitive, generally produced the
weakest performance. It showed relatively strong results on well-balanced, numeric datasets
such as Rice, but suffered more on datasets with class imbalance or mixed feature types, due to
its reliance on distance metrics and local neighborhood voting.

Extra Credits
Extra 1. Additional Algorithm
Etra 1-1. Evaluation

Dataset 1 Dataset 2 Dataset 3 Dataset 4
(Digits) (Parkinsons) (Rice) (Credit)
Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score |Accuracy|F1-Score
Decision Tree 0.9751 0.9864
Random Forest
Neural Network 0.7541 0.8597 0.9286 0.9378 | 0.8393 | 0.8240

Extra 1-2. Cost J/Graph

Dataset 1 - KNN Algorithm Dataset 2 - Neural Network

Hyper Param X Lambda=0.1, Hidden Layer=[22,64,32,1]

Other Param| Min information gain=0.00001 or Max depth=5 | Alpha=0.1, Mini-Batch(32), Stop=m size(2000)

Test Accuracy per Fold

1.04
114

o
©
s

1.0

0.9+

o
o
L

Cost (J)

0.8 1

Test Accuracy

Graph

I
o
L

0.7 4

0.6

I
N

0.5+

©
o

é All é ;3 1b Training Instances (m x Train Set)
Fold

o] 50000 100000 150000 200000 250000 300000 350000

Dataset 3 - Neural Network Dataset 4 - Neural Network

Hyper Param Lambda=1e-6, Hidden Layer=[64] Lambda=1e-6, Hidden Layer=[64,32,16,8]

Other Param | Alpha=0.1, Mini-Batch(128), Stop=m size(100) [Alpha=0.1, Mini-Batch(128), Stop=m size(2000)

0.7 4

0.6 1

Graph 8

T T T T T T T T T u T T T T
o] 50000 100000 150000 200000 250000 300000 350000 0.0 0.2 0.4 0.6 0.8 1.0
Training Instances (m x Train Set) Training Instances (m x Train Set)

T
12
le6

Extra 2. New Challenging Dataset

Extra 2-1. Which Dataset and Why

For the Extra Credit task, | chose to work with the UCI Heart Disease dataset because it fully satisfies the
criteria specified in the assignment. Most importantly, this dataset features a multi-class target variable,
where the label column contains more than two categories (e.g., O to 4), each representing a different
level of heart disease severity. This aligns with the assignment’s requirement that the outcome should not
be binary but instead involve multiple classes. In addition to the target variable structure, this dataset
includes both numerical and categorical features, such as age, cholesterol level, and maximum heart rate
(numerical), as well as chest pain type, sex, and exercise-induced angina (categorical). This variety
allows for a comprehensive preprocessing pipeline and testing of classification algorithms under realistic
conditions. The dataset also has an appropriate size — 303 samples with 13 features — which is large
enough for meaningful analysis using techniques like stratified k-fold cross-validation but small enough to
be manageable for building custom models from scratch. Furthermore, the UCI Heart Disease dataset is
a widely recognized benchmark in the machine learning community, which adds credibility and
comparability to any evaluation performed on it. To check the implementation dataset, go to the “dataset”
folder and run “load_heart.py” then you will get the “heart_disease.csV’” file to use in the algorithms below.

Extra 2-2. Evaluation

Hyperparameter Accuracy F1-Score
KNN Algorithm k=7 0.8124 0.5411
Random Forest ntrees=30 0.8091 0.3794

KNN Algorithm

0.90

° ° o o
~ ~ -] @
o w o wv
]
1

(Accuracy over testing data

o

o

o
L

Random Forest

20 30 40 50
(Value of k)

Heart_disease Dataset_Accuracy vs ntrees

0.81

0.80

0.79

Accuracy

0.77 4

0.76

Uy
20

U T T
30 40 50
ntrees

The UCI Heart Disease dataset includes both numerical and categorical features with a
multi-class target, making it well-suited for algorithms like K-Nearest Neighbors (KNN) and
Random Forest. KNN leverages local similarity, while Random Forest is robust to diverse
feature types and works well on moderately sized datasets. Both are interpretable, efficient, and
effective without requiring extensive preprocessing. In contrast, a Neural Network was not
chosen due to the dataset's small size, which increases the risk of overfitting, and because
neural networks demand complex training procedures and hyperparameter tuning. Given the
nature of the dataset and the goals of this project, KNN and Random Forest were appropriate
choices, while a Neural Network would have been unnecessarily complex. The UCI Heart
Disease dataset is small and imbalanced, with most labels being class 0. Although both KNN
and Random Forest showed strong overall performance, the class imbalance in the dataset
could skew predictions toward the majority class. KNN performed better in terms of F1-score
(0.5411) because it captures local patterns and can better detect minority classes. Random
Forest achieved similar accuracy (0.8091) but had a lower F1-score (0.3794) due to its
tendency to favor the majority class. This shows that KNN handled the class imbalance more
effectively for this dataset.

Extra 3. Ensemble Algorithm

Extra 3-1. Algorithm Structure

| designed and implemented a custom ensemble learning algorithm that combines the three
algorithms used in the previous sections: Neural Network, Random Forest, and K-Nearest
Neighbors (KNN). For each dataset, first perform 10-fold stratified cross-validation. Then, within
each fold, obtain model-specific predictions by calling the following three functions:
run_knn_single_fold(), run_tree_single_fold(), run_nn_single fold(). Each of these three models
makes independent predictions on the test split. For every test instance, then apply majority
voting across the three model predictions to generate the final ensemble prediction. Finally, the
ensemble predictions are compared to the true labels to evaluate accuracy and F1 score.

Extra 3-2. Hyperparameter Settings

When run this ensemble algorithm, other dataset accuracy and f1 score are both over 90%
except dataset 1. To make an algorithm working well with any dataset, set this algorithm’s
hyperparameter the same as the best hyperparameter in the previous regular points 2 dataset1
for random forest and neural network. An Imbalanced dataset like dataset 2 needs a small
nearest-k value so | choose k=5 which can be a reasonable number for both imbalance and
balance dataset.

Extra 3-3. Code Implementation

To run the ensemble algorithm, please navigate to the ensemble_algorithm folder and execute
the script en.py.This script automatically runs the ensemble on all four datasets (digits,
parkinsons, rice, credit_approval) and outputs accuracy and F1 score for each. The results are
saved as Excel files (e.g., ensemble_digits_metrics.xlIsx), which can be used for reporting.

Extra 3-4. Evaluation

Accuracy F1-Score
Dataset 1 (Digits) 0.6750 0.6863
Dataset 2 (Parkinsions) 0.9692 0.9796
Dataset 3 (Rice) 0.9850 0.9869
Dataset 4 (Credit Approval) 0.9234 0.9167

The ensemble algorithm achieved strong performance on most datasets, with over 90%
accuracy and F1-score except for the Digits dataset. Digits involves a 10-class classification
task with high-dimensional pixel features, which makes it more challenging for KNN and shallow
neural networks. In contrast, Parkinsons and Rice datasets are binary classification problems
with well-separated numerical features, allowing the ensemble to perform exceptionally well.
Even the Credit Approval dataset, which contains mixed-type attributes, was handled effectively
thanks to normalization and one-hot encoding, resulting in stable and reliable predictions.

Extra 4. New Type of Algorithm

Extra 4-1. Algorithm Structure

This algorithm implements multinomial linear regression which was chosen over binary logistic
regression because the digits dataset contains 10 distinct classes (digits 0 to 9). Binary logistic

regression can only handle two classes, however, multinomial regression learns a separate
weight vector for each class and predicts the class with the highest computed score (logit).

It begins by preprocessing the dataset: numeric input variables are normalized, and categorical
variables are converted into numerical form through one-hot encoding. The training process
uses gradient descent to iteratively update the model’s weights and biases. In each iteration (or
epoch), the algorithm computes predictions for all training samples, compares them to the true
labels, calculates the loss (based on the difference), and adjusts the weights in a direction that
minimizes this loss. If the change in loss between iterations becomes negligible, the training
stops. The structure of this training process mirrors the classic implementation of linear
regression via gradient descent, as outlined in the reference lecture15-slide116. For each
weight, the algorithm calculates a gradient and updates it using the learning rate. The code also
includes gradient clipping to prevent instability from excessively large updates. After training, the
model is evaluated using 10-fold stratified cross-validation to ensure robust performance. For
each fold, the model’s predictions are compared to the actual labels, and two key metrics are
computed: accuracy and macro F1 score, which is appropriate for multi-class evaluation. The
average performance across all folds is reported, and the results are saved to a text file.

Extra 4-2. Hyperparameter Settings

Learning_rate = 0.0001 determines the step size taken during gradient descent. A value too
high may cause the model to diverge, while a value too low could result in slow convergence.
Epochs = 1000 specifies the number of times the entire training dataset is used for updating the
model parameters. Higher values can improve learning but also increase training time. epsilon =
1e-6 used as a convergence threshold. If the change in loss between consecutive epochs is
smaller than this value, the algorithm stops early to save computation. K_FOLD_SIZE = 10
controls the number of folds in stratified cross-validation. Used 10-fold CV to ensure reliable
evaluation, especially on imbalanced datasets, by preserving class distribution in each split.

Extra 4-3. Code Implementation

To run the multinomial linear regression algorithm, navigate to the linear_regression folder and
execute the script reg.py.This script automatically runs the ensemble on all four datasets (digits,
parkinsons, rice, credit_approval) and outputs accuracy and F1 score for each. The results are
saved as text files “linear_regression_results.txt”, which can be used for reporting.

Extra 4-4. Evaluation

Accuracy F1-Score
Dataset 1 (Digits) 0.9310 0.9235
Dataset 2 (Parkinsions) 0.7450 0.4259
Dataset 3 (Rice) 0.9152 0.9137
Dataset 4 (Credit Approval) 0.7978 0.7868

In the evaluation of the multinomial linear regression model across four datasets, we observed
varying levels of performance depending on the nature of each dataset.

For the Digits dataset, the model achieved excellent results, with an accuracy of 93.10% and an
F1 score of 92.35%. This dataset contains clean, high-dimensional pixel features that represent
handwritten digits from 0 to 9. The class boundaries are well-separated, and the data is

balanced, making it an ideal case for a linear model. As a result, the model was able to
generalize effectively and consistently classify digits across all classes.

In contrast, the Parkinsons dataset showed relatively lower performance, especially in terms of
F1 score. While the accuracy reached 74.50%, the F1 score dropped to 42.59%. This large gap
suggests that the dataset may be imbalanced or that some classes are harder to distinguish.
Given the small size and subtle variations in features, the model likely struggled with false
negatives, leading to lower recall. This demonstrates a limitation of using simple linear models
on small and noisy biomedical datasets.

The Rice dataset exhibited strong results, with an accuracy of 91.52% and an F1 score of
91.37%. This dataset is known to be clean, structured, and linearly separable, which aligns well
with the assumptions of linear regression. The high and balanced scores indicate that the model
performed well across both classes and was not biased toward either.

Lastly, for the Credit Approval dataset, the model showed solid generalization despite
challenges. This dataset includes a mix of numeric and categorical variables, and it may contain
noise or missing values. Nonetheless, the model achieved an accuracy of 79.78% and an F1
score of 78.68%. These results suggest that the preprocessing steps—such as normalization
and one-hot encoding—effectively prepared the data, allowing the model to handle the
complexity and make reliable predictions.

Overall, the evaluation highlights that the performance of multinomial linear regression is
strongly influenced by the structure, balance, and clarity of the dataset. Clean and separable
datasets like Digits and Rice yield high scores, while more ambiguous or imbalanced datasets
like Parkinsons present challenges that linear models alone cannot fully overcome.

In addition to class imbalance, the relatively low F1-score on the Parkinsons dataset can also be
attributed to the inherent limitations of multinomial linear regression. As a linear model, it
assumes that the decision boundaries between classes are linearly separable, which may not
hold true in biomedical datasets like Parkinsons that contain subtle and nonlinear patterns in
voice features. These nonlinear interactions cannot be captured by a linear hypothesis, leading
to misclassifications, particularly in borderline or overlapping cases.

