Last updated: 2018-05-17
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(20180501) 
The command set.seed(20180501) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 484ba8a 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    log/
Untracked files:
    Untracked:  analysis/binom.Rmd
    Untracked:  analysis/binomial.Rmd
    Untracked:  analysis/overdis.Rmd
    Untracked:  analysis/smashtutorial.Rmd
    Untracked:  docs/figure/poiunknown.Rmd/
    Untracked:  docs/figure/smashtutorial.Rmd/
Unstaged changes:
    Modified:   analysis/ashpmean.Rmd
    Modified:   analysis/nugget.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. 
From the comparisons for estimating unknown \(\sigma\), the ols and smash verison of method 4 perform uniformly better. To deal with case when both \(\mu_t\) and \(\sigma\) are unknown in the model \(Y_t=\mu_t+N(0,\sigma^2)+N(0,s_t^2)\), we adopt the iterative algorithm in Xing\(\&\)Stephens(2016). We initialize \(\hat\sigma^2=\frac{1}{T}\Sigma_t^T\{((Y_t-Y_{t+1})^2+(Y_t-Y_{t+1})^2-2s_t^2-s_{t-1}^2-s_{t+1}^2)/4\}\).
#' function to estimate both mu and \sigma
#' @param x:data
#' @param st: known variance
#' @param family: wavelet basis
#' @param filter.number: as in smash.gaus
#' @param niters: number of iterations to estimate \sigma and mu
#' @param y_var_est: 'mle', 'moment', 'eb', 'huber','wls'
#' @param z_var_est: method to estimate variance: 'rmad', 'smash', 'default'
#' @param k: parameter in huber m estimator
#' @return estimated mean and \sigma
#' @export
smash.gaus.gen=function(x,st,y_var_est='mle',z_var_est='smash',family='DaubExPhase',
                        filter.number=1,niters=2,k=NULL){
  #initialize \sigma^2 using moment method
  sigma0=sigma_est(x,st=st,method = 'moment')
  #sd0=sqrt(sigma0^2+st^2)
  sd.est=c()
  mu.est=c()
  sd.est=c(sd.est,sigma0)
  for(iter in 1:niters){
    #estimate mu given sd
    mu.hat=smash.gaus(x,sigma=sqrt(sd.est[iter]^2+st^2),family=family,filter.number = filter.number)
    mu.est=rbind(mu.est,mu.hat)
    #estimate sd given mu
    sd.hat=sigma_est(x,mu.est[iter,],st,var_est=z_var_est,k=k,method=y_var_est,family=family,filter.number = filter.number)
    sd.est=c(sd.est,sd.hat)
  }
  #mu.hat=smash.gaus(x,sigma=sqrt(sd.hat^2+st^2),family=family)
  return(list(mu.hat=mu.hat,sd.hat=sd.hat))
}
sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
loaded via a namespace (and not attached):
 [1] workflowr_1.0.1   Rcpp_0.12.16      digest_0.6.13    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.0.5  
 [7] git2r_0.21.0      magrittr_1.5      evaluate_0.10    
[10] stringi_1.1.6     whisker_0.3-2     R.oo_1.21.0      
[13] R.utils_2.6.0     rmarkdown_1.8     tools_3.4.0      
[16] stringr_1.3.0     yaml_2.1.19       compiler_3.4.0   
[19] htmltools_0.3.5   knitr_1.20       
This reproducible R Markdown analysis was created with workflowr 1.0.1