Last updated: 2018-05-05
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180501)
The command set.seed(20180501)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 3bd6a61
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: docs/figure/
Ignored: log/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Examine the performance of smash-gen(known \(\sigma\)) under different simulation settings.
Let \(X_t\) be a Poisson observation, \(t=1,2,\dots,T\).
smash.gaus
and obtain \(\hat\mu_t\).Convergence criteria: \(||\mu_t^{(i)}-\mu_t^{(i-1)}||_2\leq \epsilon\).
#' smash generaliation function
#' This function is for $Y_t=\mu_t+N(0,s_t^2)+N(0,\sigma^2)$ with known $s_t^2$ and $\sigma^2$.
#' @param x: a vector of observations
#' @param sigma: standard deviations, scalar.
#' @param family: choice of wavelet basis to be used, as in wavethresh.
#' @param niter: number of iterations for IRLS
#' @param tol: criterion to stop the iterations
smash.gen=function(x,sigma,family='DaubExPhase',niter=100,tol=1e-2){
mu=c()
s=c()
mu=rbind(mu,rep(mean(x),length(x)))
s=rbind(s,rep(1/mu[1],length(x)))
y=log(mean(x))+(x-mean(x))/mean(x)
for(i in 1:niter){
mu.hat=smash.gaus(y,sigma=sigma+s[i,])
mu=rbind(mu,mu.hat)
#update m and s_t
s=rbind(s,1/mu.hat)
#update y
mt=exp(mu.hat)
y=log(mt)+(x-mt)/mt
#y=log(mu.hat)+(x-mu.hat)/mu.hat
if(norm(mu.hat-mu[i,],'2')<tol){
break
}
}
return(list(mu.hat=mu.hat,mu=mu,s=s))
}
Data generation by Poisson glm:
\(\lambda_t=\exp(m_t+\epsilon_t)\), where \(\epsilon_t\sim N(0,\sigma^2)\).
\(X_t\sim Poi(\lambda_t)\).
#' Simulation study comparing smash and smashgen
simu_study=function(m,sigma,seed=1234,
niter=100,family='DaubExPhase',tol=1e-2,
reflect=FALSE){
set.seed(seed)
lamda=exp(m+rnorm(length(m),0,sigma))
x=rpois(length(m),lamda)
#fit data
smash.out=smash.poiss(x,reflect=FALSE)
smash.gen.out=smash.gen(x,sigma=sigma,niter=niter,family = family,tol=tol)
return(list(smash.out=smash.out,smash.gen.out=exp(smash.gen.out$mu.hat),smash.gen.est=smash.gen.out,x=x))
}
\(\sigma=0.01\)
library(smashr)
m=rep(3,256)
simu.out=simu_study(m,0.01)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright", # places a legend at the appropriate place
c("truth","smash-gen"), # puts text in the legend
lty=c(1,1), # gives the legend appropriate symbols (lines)
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.1\)
simu.out=simu_study(m,0.1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.5\)
simu.out=simu_study(m,0.5)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m),col='gray80')
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m),col='gray80')
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=1\)
simu.out=simu_study(m,1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m),col='black')
legend("topleft",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m),col='black')
legend("topleft",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.01\)
m=c(rep(3,128), rep(5, 128), rep(6, 128), rep(4, 128))
simu.out=simu_study(m,0.01)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.1\)
simu.out=simu_study(m,0.1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.5\)
simu.out=simu_study(m,0.5)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=1\)
simu.out=simu_study(m,1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topleft",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topleft",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.01\)
m=c()
for(k in 1:8){
m=c(m, rep(1,16), rep(5, 16))
}
simu.out=simu_study(m,0.01)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=0.1\)
simu.out=simu_study(m,0.1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=0.5\)
simu.out=simu_study(m,0.5)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=1\)
simu.out=simu_study(m,1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=0.01\)
m=c()
for(k in 1:32){
m=c(m, c(1,5))
}
simu.out=simu_study(m,0.01)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=0.1\)
simu.out=simu_study(m,0.1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=0.5\)
simu.out=simu_study(m,0.5)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=1\)
simu.out=simu_study(m,1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash-gen')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
plot(simu.out$x,col = "gray80" ,ylab = '',main='smash')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
\(\sigma=0.01\)
m = seq(-1,1,length.out = 256)
m = m^3-2*m+1
simu.out=simu_study(m,0.01)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.1\)
m = seq(-1,1,length.out = 256)
m = m^3-2*m+1
simu.out=simu_study(m,0.1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=0.5\)
m = seq(-1,1,length.out = 256)
m = m^3-2*m+1
simu.out=simu_study(m,0.5)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
\(\sigma=1\)
m = seq(-1,1,length.out = 256)
m = m^3-2*m+1
simu.out=simu_study(m,1)
#par(mfrow = c(1,2))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.gen.out, col = "red", lwd = 2)
lines(exp(m))
legend("topright",
c("truth","smash-gen"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black","red", "blue"))
plot(simu.out$x,col = "gray80" ,ylab = '')
lines(simu.out$smash.out, col = "blue", lwd = 2)
lines(exp(m))
legend("topright",
c("truth", "smash"),
lty=c(1,1),
lwd=c(1,1),
cex = 1,
col=c("black", "blue"))
sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] smashr_1.1-1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.0.1 REBayes_1.3
[7] MASS_7.3-47 pscl_1.4.9 doParallel_1.0.11
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.3
[13] ashr_2.2-7 stringr_1.3.0 caTools_1.17.1
[16] tools_3.4.0 parallel_3.4.0 grid_3.4.0
[19] data.table_1.10.4-3 R.oo_1.21.0 git2r_0.21.0
[22] iterators_1.0.8 htmltools_0.3.5 assertthat_0.2.0
[25] yaml_2.1.19 rprojroot_1.3-2 digest_0.6.13
[28] Matrix_1.2-9 bitops_1.0-6 codetools_0.2-15
[31] R.utils_2.6.0 evaluate_0.10 rmarkdown_1.8
[34] wavethresh_4.6.8 stringi_1.1.6 compiler_3.4.0
[37] Rmosek_8.0.69 backports_1.0.5 R.methodsS3_1.7.1
[40] truncnorm_1.0-7
This reproducible R Markdown analysis was created with workflowr 1.0.1