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1 Introduction
DMRI is used for creating visual representations of
the structural connectivity of the brain, also known as
tractography. Research has shown that using a tissue
classifier can be of great benefit to create more accu-
rate representations of the underlying connections [1].
The aim of this project was to implement an im-
age segmentation algorithm in DIPY [2] for classify-
ing the different tissue types of the brain using struc-
tural T1 weighted images (T1-w) and diffusion MRI
images (dAMRI), and to incorporate the resulting tissue
probability maps for Anatomically-Constrained Trac-
tography (ACT) [3]. We used Diffusion Power Maps
(DPMs), which are scalar maps that are calculated
from dMRI data and have a tissue contrast similar to
the T1-w. By performing the tissue classification on
dMRI derived scalar maps, the T1-w to dMRI regis-
tration step can be avoided.

2 Approach

We used a Bayesian approach for the segmentation
in a similar fashion than the methods proposed in [4]
and [5] by applying the Maximum-A-Posteriori (MAP)
procedure. The prior probability was modeled with
Markov Random Fields (MRF). The MRF distribu-
tion was modeled as a Gibbs distribution. We used
the Expectation Maximization (EM) algorithm to up-
date the tissue labels at each site and to update the
parameters of the log-likelihood in all iterations.

3 Results
The first row of figure 1 shows the tissue classifi-
cation on T1-w, the initial segmentation based on
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maximum likelihood and the final segmentation af-
ter 10 iterations and beta=0.1. Beta determines the
weight of the neighborhood in the MRF model.
These two parameters were tuned and validated by
permuting 42 different combinations and calculat-
ing the Jaccard index between the segmentation of
the proposed method against manually segmented
brains from the IBSR dataset [http://www.nitrc.
org/projects/ibsr]. The second row of figure 1
shows the probability maps of the three main tissue
classes of the brain. The top row of Figure 2 shows on
the left the Diffusion Power Map (DPM), followed by
its tissue classification and the streamlines from the
corpus callosum reconstructed with ACT. The bottom
row of figure 2 shows the tissue probability maps of
the segmentation performed on a DPM.
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Figure 1 Example segmentations on T1 images.

4 Conclusions
We developed a segmentation algorithm based on a
Bayesian framework by using the MAP-MRF approach
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Figure 2 Example segmentations on Difussion Power Maps
(DPM).

and EM. The algorithm was tested on T1-w as well as
on DPMs [6]. The tissue specific probability maps from
both the T1-w and the DPMs were then used for ACT.
We were able to successfully run ACT with the tissue
probability maps derived from the DPMs.
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