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ABSTRACT

Recently, several JavaScript-based deep learning frameworks have
emerged, making it possible to perform deep learning tasks directly
in browsers. However, little is known on what and how well we can
do with these frameworks for deep learning in browsers. To bridge
the knowledge gap, in this paper, we conduct the first empirical
study of deep learning in browsers. We survey 7 most popular
JavaScript-based deep learning frameworks, investigating to what
extent deep learning tasks have been supported in browsers so
far. Then we measure the performance of different frameworks
when running different deep learning tasks. Finally, we dig out
the performance gap between deep learning in browsers and on
native platforms by comparing the performance of TensorFlow.js
and TensorFlow in Python. Our findings could help application
developers, deep-learning framework vendors and browser vendors
to improve the efficiency of deep learning in browsers.
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1 INTRODUCTION

In the past decade, the advance of deep learning (DL) technique
has significantly promoted the artificial intelligence (AI). Numer-
ous Al applications, e.g., image processing, object tracking, speech
recognition, and natural language processing, have raised urgent
requirements to adopt the DL. As a result, various libraries and
frameworks, such as TensorFlow [18], Caffe [2], and CNTK [3],
have been proposed and applied in practice.

However, developing Al applications powered by the popular
DL frameworks and libraries is a non-trivial task. Usually, these
frameworks and libraries are leveraged by native applications that
can run on heterogeneous development environments such as Win-
dows, Linux, MacOS/iOS, and Android. The applications are devel-
oped by various imperative programming languages, i.e., C/C++ on
Windows, Objective-C on iOS and MacOS, and Java on Android.
Developing Al applications that is portable to multiple platforms is
indeed not easy. The development is particularly complicated for
mobile applications, as the app vendors usually need to develop
and maintain both i0OS and Android versions. In addition, the de-
ployment is also non-trivial, as most current platforms come with
an appstore, some of which require manual testing of submitted
applications by the appstore provider before being published-a pro-
cess that can take several weeks-and applications can be rejected
for seemingly arbitrary reasons.
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Compared to the native applications, Web applications can in-
deed make the cross-platform portability issues much simpler. The
same implementation of a DL-powered Web application can be de-
ployed in the browser on all platforms regardless of the underlying
hardware device types (PC, smartphones, and wearable devices)
and the operating systems (Windows, Mac, i0S, and Android). Ad-
vancements in HTML5, CSS3, and especially JavaScript language,
started to enable the creation of DL-powered Web applications that
offer a comparable experience to native applications, especially for
the popular Web game applications [38][34]. In particular, bene-
fited from the development of WebGL [32][19][20], current major
browsers such as Google Chrome, Mozilla FireFox, and Apple Sa-
fari, can better utilize the integrated graphics card to accelerate DL
tasks, without the need of standalone graphics card like NVIDIA
which is required by native DL frameworks.

Running DL-powered Web applications in browsers has drawn
the attention from various research communities including Al, soft-
ware engineering, Web browsers, and even computer architecture.
As a result, various JavaScript-based DL development frameworks
and libraries have been published. In 2015, Karpathy presented the
ConvNet]S [4], known as the first JavaScript library for DL in Web
browsers to date. Other efforts such as WebDNN [15], Keras.js [5],
and Mind [7], were proposed to support DL in browsers. In early
2018, Google released the TensorFlow.js [14], which is a significant
step for promoting the DL in browsers.

Although the preceding efforts along with some on-going efforts
seem to make running DL tasks in browsers possible, little is known
on what DL tasks we can do and how well DL works in browsers.
More importantly, considering the long debate of performance of
Web applications compared with that of native applications, the
same issue also exists in developing DL-powered Web applications.
Hence, it is urgent to address such a knowledge gap in terms of the
feasibility and usability for running DL in Web browsers.

In this paper, we make the first empirical study of DL in browsers
by answering the following research questions.

e RQ1: What features do existing frameworks provide to im-
plement various kinds of DL tasks in the browser?

e RQ2: How well do existing frameworks perform over differ-
ent DL tasks?

¢ RQ3: How big is the performance gap between running DL
in the browser and on the native platform?

We select 7 popular JavaScript-based frameworks that support
running DL in browsers, and conduct a characteristic study over
them. We develop a browser extension to measure the performance
as well as the utilization of system resources when running different
DL tasks. We choose the TensorFlow.js and native TensorFlow in
Python to compare the performance of DL in browsers with that
on native platforms.
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The key findings of our study includes:

o DL in browsers is still at dawn. Most frameworks of DL in
browsers support only a specific subset of DL tasks. Among all the
frameworks, TensorFlow.js provides the most number of function-
alities to realize various kinds of DL tasks.

e Support of training in browsers is not fledged. In most frame-
works, inference has drawn more attention compared with training.
For training tasks, the number of neurons per layer dominates the
performance variation considering the complexity of DL models
since the browser is limited in complex matrix calculation.

e Model loading dominates the computation for inference
tasks. Loading and warming up the DL model costs more time
than running the inference task itself. The CPU backend performs
better than the GPU backend when the browser run inference tasks
for small-size models.

o Integrated graphics card helps browsers to beat native plat-
forms when standalone graphics card is not available. For
popular pre-trained models like MobileNet and Inception, Tensor-
Flow.js is just 1x to 2x slower than native TensorFlow in Python
when running inference tasks on the standalone graphics card. Ten-
sorFlow.js on the integrated graphics card outperforms the native
TensorFlow on CPU when running the same inference task.

o System resources can be further exploited for in-browser
DL tasks. For TensorFlow.js, the CPU is not fully utilized (about
80%) when DL tasks run on the CPU backend. The memory allocated
to WebGL is limited by the browser, leading to the crash of some
DL tasks.

Based on the findings, We have drawn some practical recommen-
dations for application developers as well as DL-framework and
browser vendors. Application developers who aim to develop DL-
powered Web applications, need to better control the the number
of neurons per layer in DL models, pre-load the model file in ad-
vance, and employ the CPU backend rather than the GPU backend
when running inference tasks on small DL models. DL-framework
vendors should consider encoding the model file in binary format
rather than JSON to reduce the file size as well as improve the
computation time, and leverage compiler optimization techniques
to reduce the call stack. Browser vendors should consider support-
ing multi-process and scheduling over multi-core in the JavaScript
engines.

The remainder of this paper is organized as follows. Section 2
shows some background knowledge of deep learning in browsers.
Sections 3 to 5 describe the results, including the analysis of frame-
work functionality, performance measurement, and comparison
with native DL frameworks. Section 6 presents the implications
and recommendations drawn from the findings. Section 7 surveys
related work and Section 8 concludes the paper with future work.

2 BACKGROUND

In this section, we give some background of deep learning and then
discuss how browsers support deep learning tasks.

2.1 Deep Learning

Deep learning (DL) is a class of machine learning algorithms that
use a cascade of multiple layers of nonlinear processing units (called
neurons) for feature extraction and transformation. Each successive

layer uses the output from the preceding layer as input. In recent
years, DL has gained great success in many areas such as computer
vision, speech recognition and natural language processing.

There are many types of DL models, among which deep neural
network (DNN) [23], convolutional neural network (CNN) [28],
and recurrent neural network (RNN) [35] are three basic structures.
DNN is a typically feedforward network with multiple layers be-
tween the input and output layers, in which data flows from the
input layer to the output layer without looping back. CNN uses a
variation of multi-layer perceptrons designed to require minimal
preprocessing, usually applied to analyzing visual imagery. RNN
has connections between nodes forming a directed graph along a
temporal sequence, allowing it to exhibit temporal behaviors.

DL consists of two phases: training phase where the input data
are used to calculate the parameters of the model, and inference
phase where the trained model outputs the value given a specific
input sample.

2.2 Deep Learning in Browsers

Recently, there is a trend that applications perform DL tasks directly
on the clients for better privacy and timely response. As a cross-
platform client-side computation target, Web browsers have drawn
the attention to Al communities to support client-side DL. Sev-
eral applications of in-browser DL are implemented and published,
such as 1) TensorFlow playground [13], which is an interactive
platform to learn the principle of DL; 2) Teachable Machine [12],
which gives the users an experience of teaching the machine how
to response when they pose a gesture, using camera in the browser;
3) MLitB [33], which is capable of performing distributed learning
with heterogeneous classes of devices using Web browsers; 4) Mor-
phCast [9], which combines interactive video and face recognition
with emotion, gender and age analysis to create adaptive-media.

DL in browsers is implemented by JavaScript and rely on the
browser engine to execute. Fortunately, the advancement of latest
browsers provides APIs to access GPU, which can be used to ac-
celerate matrix calculations of DL. These APIs are: 1) WebGL [16],
which is a JavaScript API for rendering interactive 2D and 3D graph-
ics within any compatible Web browser; 2) WebGPU [17], which is
the fastest among existing JavaScript APIs for accelerating graphics
and computation. Currently, WebGPU API is supported only in
Safari Technology Preview. We should mention that WebGL and
WebGPU can run on both integrated graphics cards and standalone
graphics cards.

3 SUPPORTED FEATURES OF DEEP
LEARNING IN BROWSERS

In this section, we make a characteristic study to answer the first
research question, i.e., what features do existing frameworks pro-
vide to implement various kinds of DL tasks in the browser? We
first introduce the frameworks selected for the study. Then we com-
pare the features of these frameworks from two aspects: provided
functionality and developer support. For provided functionality,
we mainly examine whether each framework supports some basic
functionalities that are commonly used in the development of DL
applications. For developer support, we take a look at some factors



which may affect the efficiency of developing and deploying DL
applications. Table 1 summarizes all the results as of Nov. 2018.

3.1 Selected Frameworks

To select the state-of-the-art frameworks of supporting DL in browsers,

we search on the GitHub with the keyword “deep learning frame-
work” and filter the results in JavaScript language. Then we choose
the top 7 frameworks of which the number of stars exceeds 1,000
on GitHub. We introduce each framework as follows.
TensorFlow.js [14], released by Google in Mar. 2018, is an in-
browser machine learning library that supports defining, training,
and running models entirely in the browser using JavaScript. It is
the successor to deeplearn.js which is now called TensorFlow.js
Core. TensorFlow.js is powered by WebGL and provides high-level
APIs for defining models. TensorFlow.js support all the Keras layers
(including Dense, CNN, LSTM, and so on). Therefore, it is easy to
import models pre-trained by the native TensorFlow and Keras into
the browser and run with Tensorflow.js.

ConvNet]S [4] is a Javascript library originally written by Andrej
Karpathy at Stanford. The entire library is based on transforming
3-dimensional volumes of numbers. ConvNet]S currently supports
common neural network models and cost functions for classifica-
tion and regression. Furthermore, it supports convolutional net-
works, and an experimental reinforcement learning. Unfortunately,
although ConvNet]S might be the most famous framework before
TensorFlow.js, it is no longer maintained after Nov. 2016.
Keras.js [5] abstracts away a number of frameworks as backends
including TensorFlow, CNTK, etc. It supports importing models
pre-trained by Keras for inference. In the GPU mode, computation
is performed by WebGL. However, this project is no longer active.
WebDNN [15], released by the University of Tokyo, claims to be
the fastest DNN execution framework in browsers. It supports only
the inference tasks. The framework supports 4 execution backends:
WebGPU, WebGL, WebAssembly, and fallback pure JavaScript im-
plementation. WebDNN optimizes DNN models by compressing
the model data to accelerate the execution. Empirical evaluations
showed that it achieved more than 200x acceleration [6].

brain.js [1] is a JavaScript library for neural networks replacing
the deprecated “brain” library. It provides DNN, RNN, LSTM and
GRU for training tasks. The library supports serializing and loading
the state of a trained DL model with JSON.

synaptic [11] is a JavaScript architecture-free neural network li-
brary, supporting basically any type of first order or even second
order RNN. This library also includes a few built-in DL architectures,
including multi-layer perceptrons, LSTM, liquid state machines and
Hopfield networks.

Mind [7] is a flexible neural network library. The core framework
has only 247 lines of code, which uses a matrix implementation
to process training data. It supports customization of the network
topology and plugins to configure pre-trained models created by
the mind community. However, this framework is no longer active.

3.2 Provided Functionality

Support for training. Most frameworks support training and in-
ference tasks in the browser. However, Keras.js and WebDNN do not

support training DL models in browsers. They support only load-
ing pre-trained models to perform inference tasks. Therefore, the
number is not available for the types of layer/activation/optimizer
supported by Keras.js and WebDNN in Table 1.

Supported network types. Some frameworks are not for general-
purpose DL tasks, so they differ in the supported network types.
Specifically, TensorFlow.js, Keras.js and WebDNN support three
network types: DNN, CNN and RNN. However, ConvNet]JS mainly
supports CNN tasks and does not support RNN. brain.js and synap-
tic mainly support RNN tasks, and do not support convolution and
pooling operations used in CNN networks. Mind supports only the
basic DNN.

Supported layer types. All frameworks support building neural
networks using units of layers. The layer API of TensorFlow.js
supports 49 different layers, including dense, convolution, pooling,
RNN, normalization, and so on. Other frameworks support a smaller
variety of layers, which are also related to the network types they
support. It should be noted that the core API of TensorFlow.js is
implemented in a way similar to the native TensorFlow which com-
bines various operations to build computational graphs. synaptic is
an architecture-free framework that supports building any type of
first order or even second order RNN networks.

Supported activation/optimizer types. In general, TensorFlow.js
provides developers with the most kinds of choices. For activation
functions, other frameworks support only basic sigmoid or ReLU.
For optimizers, other frameworks mainly support basic stochastic
gradient descent (SGD).

Support for GPU acceleration (WebGL). TensorFlow.js is the
only framework that supports GPU-accelerated training tasks. Ten-
sorFlow.js, Keras.js, and WebDNN support using GPU to accelerate
inference tasks. WebDNN also supports a more advanced tech-
nology, WebGPU, but WebGPU has been supported by only the
technology preview version of Safari.

3.3 Developer Support

Documents. Documents provided by TensorFlow.js, ConvNet]S,
WebDNN and synaptic are completed and in detail. The document
of Keras.js is not complete and brain.js has only a few tutorials.
Demos. All the frameworks provide demos for developers to get
start. TensorFlow.js offers the richest demos covering a wide range
of use cases.

Importing models from other frameworks. TensorFlow.js, Keras.js

and WebDNN support importing models from native DL frame-
works in Python and all of them provide Python scripts for convert-
ing models. TensorFlow.js supports models trained by TensorFlow
and Keras. Keras.js supports Keras models. WebDNN supports im-
porting models from TensorFlow, Keras, Caffe and Pytorch. With
the support of using pre-trained models from other DL frameworks,
the development effort can be significantly reduced.

API to save/load model. All frameworks that support training
tasks in the browser have APIs for saving models. All frameworks
have APIs for loading models.

Support for server side (Node.js). All frameworks are supported
for Node.js. Such a feature makes it possible to offload computation
inside browsers onto remote servers.



Table 1: Characteristics of JavaScript-based frameworks that support deep learning in browsers.

TensorFlow.js ConvNet]S Keras.js WebDNN brain.js synaptic Mind
Basic Information
Github Stars 9453 9364 4348 1464 6366 6315 1333
. . Stanford The University Robert Juan Steven
Main Contributor Google University Leon Chen of Tokyo Plummer Cazala Miller
Last Commit Date Oct 30, 2018 Nov 25,2016  Aug 17, 2018 Oct 25, 2018 Nov 5,2018  Mar 25,2018  Jul 7, 2017
Status Active Not Active Not Active Active Active Active Not Active
Functionality
Support for Training Y Y N N Y Y Y
Supported DNN Y Y Y Y Y Y Y
N Tvoes CNN Y Y Y Y N N N
P RNN Y N Y Y Y Y N
Supported Layer Types 49 7 NA NA 7 1 1
Supported Activation Types 16 4 NA NA 4 5 2
Supported Optimizer Types 7 3 NA NA 1 NA NA
Support for GPU Accelaration (WebGL) N Y Y N N N
Developer Support
Documents Y Y Not finished Y Only tutorials Y Y
Demos 20 10 9 8 7 7 4
. TensorFlow Y N N Y N N N
g’:}l: °r;‘“g M°de1]: from Keras Y N Y Y N N N
er Frameworks Caffe&Pytorch N N N Y N N N
Save Y Y N N Y Y Y
API to Save/Load Model Toad ¥ v ¥ v ¥ v ¥
Support for Server Side (Node.js) Y Y Y Y Y Y Y
Library Size 732KB 33KB 650KB 130KB 819KB 106KB NA

Library size. We list the size of the library files that need to be
loaded into browsers. ConvNet]S is the smallest, which is just 33KB.
TensorFlow.js and brain.js have very large size of files, which are
732KB and 819KB, respectively. Small-size libraries are better for
loading applications in browsers since all the files have to be down-
loaded on demand.

4 PERFORMANCE OF DEEP LEARNING IN
BROWSERS

In this section, we conduct a measurement study to investigate the
second research question, i.e., how well do existing frameworks
perform over different DL tasks? We study the influence of model
complexity and backend processor (CPU or GPU) on the perfor-
mance when the browser runs training and inference tasks.

4.1 Experiment Setup

DL model. As explained before, the network types supported by
different frameworks are not the same. So we adopt the most basic
fully connected neural network as the model in the experiment. For
the dataset to run the DL tasks, we use the classic MNIST handwrit-
ten digit recognition database [8]. The model to be trained has 784
input nodes and 10 output nodes. To study the influences of model
complexity on the performance, we choose different configurations
of the model. The parameters include 1) the number of the hidden
layers (depth) of the neural network, which ranges in [1, 2, 4, 8],
and 2) the number of neurons (width) in each hidden layer, which
ranges in [64, 128, 256]. The range of depth and width is set based
on the assumption that client-side DL models should be of small

size, being able to run on the client. In the training process, the
batch size is always set to 64.

Hardware. In order to study the performance difference between
CPU and GPU backend, we use a Hasee T97E laptop computer,
which has a standalone graphics card, Nvidia 1070 Max-Q (with
8GB GPU memory). The CPU is Intel i7-8750H, which includes an
Intel HD Graphics 630, enabling us to measure the performance
using integrated graphics card. In the following, we use nGPU and
iGPU to denote the GPU backend on the standalone Nvidia graphics
card and the integrated Intel graphics card, respectively.
Software. All the experiments run on the Chrome browser (version:
71.0.3578.10 dev 64-bit) on Ubuntu 18.04.01 LTS (64-bit). For the
frameworks, we use their latest published version.

Performance measurement. For each DL task, we implement a
Web page where the configurations of DL models can be varied
through the parameters in the URL. We run each DL task on the
Chrome browser, and measure the time spent on finishing the task.
Since each experiment usually requires running dozens of tasks
under different configurations, we developed a Chrome extension
to iterate all the pages and change the configuration after one
task is performed. This browser extension is also responsible for
monitoring the system resource usage of the Web page. At the same
time, a local server records the experimental statistics uploaded by
the extension.

4.2 Training Performance

We select four JavaScript frameworks, brain.js, ConvNet]S, synaptic,
and TensorFlow.js, which support training in browsers, to compare
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Figure 1: Average training time (ms) on one batch under different model complexities. The y-axis is on log scale.

their performance of running training tasks. All the four frame-
works can train models on the CPU backend except that Tensor-
Flow.js is also able to use the GPU backend via WebGL. We train the
defined model using each framework and obtain the average time
spent on training one batch. Figure 1 shows the results under differ-
ent model complexities. Since the training time of synaptic is about
tens to hundreds of times longer than that of other frameworks, we
omit the result of synaptic in the figure for better presentation but
the findings are similar to other frameworks.

In general, the training time increases with the increase of the
network size since more computation is needed to complete the
training process for larger networks. Comparing the training time
of different frameworks on the CPU backend, we can see that Con-
vNet]S is the fastest among all the frameworks for all network
configurations. The possible reason may be that ConvNet]S is de-
signed to be simpler, which can be reflected by its small library file
size. Brain.js is closely behind, with a performance gap of about two
times (2x) with ConvNet]S. Tensorflow.js has a performance gap
of two to three times (2x-3x) with ConvNet]S. When comparing
the training time ratio of ConvNet]S over TensorFlow.js, we find
that the performance gap is gradually reduced when the depth and
width increase, indicating that compared with ConvNet]S, Tensor-
Flow.js has relatively large overhead beyond calculation. In addition,
the performance gap is larger as the network width increases than
as the network depth increases, implying that TensorFlow.js deals
better with large-scale matrix calculation than ConvNet]S.

GPU benefits. The training time on the CPU backend becomes
longer with the increase of network size, but the results on the
GPU backend are not the same. For both the iGPU with weaker
computation power and the nGPU which can satisfy larger-scale
matrix calculations, the training time does not increase significantly.
But in the process from (4 hidden layers, 128 neurons per layer) to
(8 hidden layers, 256 neurons per layer), the training time of iGPU
increases significantly. The reason may be that under the network
size set in this experiment, the training process does not reach
the GPU’s capability bottleneck. Although the matrix computation
capability of nGPU is better than that of iGPU, the training time
on nGPU is even longer than iGPU. Such a result is caused by the
excessive time overhead to call the WebGL for accessing GPU. The
real computation time of GPU should be much shorter.

System resource utilization. We show the statistics of CPU uti-
lization of each framework during the training process in Table 2.
110% is the upper bound of CPU utilization. The capability of multi-
core processor cannot be used since the JavaScript engine is single-
threaded. As a result, it can only maximize the usage of a single

Table 2: CPU utilization (%) in the training process.

Framework Backend | Max | Min | Average
brain.js CPU | 104.0 99.9 101.2
ConvNetJS CPU | 108.0 | 101.9 104.1
synaptic CPU | 1139 88.7 102.8
CPU | 108.0 61.0 82.1

TensorFlow.js iGPU | 82.0 | 549 65.9
nGPU 75.9 48.0 60.0

core. The reason why the CPU utilization is over 100% is that other
kernel and user space components occasionally run simultaneously
in other threads.

On the CPU backend, TensorFlow.js sometimes cannot maximize
the utilization of a single core and its average CPU utilization is
only 82.1%. Meanwhile, we can find that when running training
tasks on the GPU backend, CPU is not fully utilized since most
computation is on the GPU. Training on iGPU has about 5-7%
higher CPU utilization than that on nGPU.

4.3 Inference Performance

We select 6 JavaScript frameworks to compare their performance
of running inference tasks. TensorFlow.js, Keras.js, and WebDNN
support using GPU for acceleration, but brain.js, ConvNet]JS, and
synaptic support using only CPU for inference. In terms of model
usage, brain.js, ConvNet]S, synaptic and TensorFlow.js support sav-
ing their own trained models, while Keras.js and WebDNN only
support importing pre-trained models from other deep learning
frameworks. Therefore, for brain.js, ConvNet]S, synaptic and Ten-
sorFlow.js, we use the models saved by the frameworks themselves.
For Keras.js and WebDNN, we use the models trained by Keras and
then convert the models to the corresponding format. Theoretically,
the parameter values of the trained DL models should be different,
but the absolute value does not affect the inference time. So we
just assign the same parameter values to all the models of different
frameworks.

The inference task involves loading a pre-trained model and
then given a sample input, the model outputs the result. In addition,
on the GPU backend, there is a warmup process where the first
sample for inference is usually used to activate the GPU processor.
Therefore, we break down the inference process into three phases:
model loading, warming up, and inference, and study the fine-
grained performance. Due to the space limitation, we omit the
results where the model depth is 8 in the following analysis because
the trend is similar as the depth increases. Besides, since the model
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Table 3: Size of model files (MB).

Depth | Width | brainjs | ConvNet]S | synaptic | TensorFlow.js
64 1.4 1.3 34 0.2

1 128 2.7 2.7 6.7 0.4

256 5.5 5.4 13.3 0.8

64 1.5 1.5 3.7 0.2

2 128 3.2 3.1 7.8 0.5

256 7.2 7.1 17.7 1.1

64 1.7 1.7 4.2 0.3

4 128 4.0 4.0 10.1 0.6

256 10.7 10.5 26.5 1.6

loading time and inference time of synaptic are still much longer
than those of other frameworks, we do not depict the results of
synaptic in the figures for better presentation.

Model file size. We first investigate the size of the model file used
by different frameworks. As models for inference usually should
be downloaded from the remote server, smaller size of model files
means shorter downloading time. Table 3 shows the size of model
files that are used in all inference experiments. ConvNet]S and
brain.js use similar JSON encoding, so the size of their model files
are nearly the same. The model file of synaptic uses JSON encoding
as well but its size is the largest among all the frameworks. As
the model files used by TensorFlow.js, Keras.js and WebDNN are
all converted from Keras models, their model files are of the same
size. So we just show TensorFlow.js in the table. Since the model
converted from Keras is compressed and saved as a binary file, the
size can be greatly reduced, just about 1/7 of the model file in JSON.
Model loading time. We then compare the time spent on loading
the model of different frameworks, as shown in Figure 2. For the
CPU backend, the loading time of different models of the same
framework is proportional to the size of the model files described in
Table 3. However, the model loading time of different frameworks
is significantly different. ConvNet]S is the fastest. Model loading
time of brain.js, TensorFlow.js and Keras.js are consistent in terms
of magnitude. Interestingly, the increase of loading time of Con-
vNet]S, brain.js and synaptic is particularly noticeable when the

width increases. The result is caused by their choice of using JSON
to encode models. The model loading time of synaptic is slowest
among all the frameworks, which are more than 100x to 1000x
longer than ConvNet]S. The model loading time of TensorFlow.js
is almost unchanged regardless of the model size.

The loading time on the GPU backend does not change much un-
der different model complexities. However, the difference is still sig-
nificant between different frameworks. TensorFlow.js is the fastest.
Compared with loading models on the CPU backend, Keras.js speeds
up loading large models, but the loading time of WebDNN is longer.
In addition, it can be seen that there is no difference in the model
loading time between iGPU and nGPU.

Warmup time. Next, we examine the difference of warmup time
on the GPU backend. As shown in Figure 3, Keras.js is still far ahead,
and can complete the warmup in 3ms on all tasks. Tensorflow.js is
the second, and WebDNN is the worst. On the whole, the warmup
time on iGPU backend is shorter than that on nGPU.

Inference time. Figure 4 shows the average time of doing inference
on one sample. Almost all the inference tasks can finish within 1.5ms
(except synaptic, of which the shortest is 6.68ms). In the range
of the model sizes we set, the powerful computation capability
of GPU does not make a difference. Among all the model sizes,
ConvNet]S occupies all the first place, followed by WebDNN on
the CPU backend. The inference time of WebDNN on the GPU
backend is longer than the inference time on the CPU backend.
As for TensorFlow.js, running on the CPU backend is faster for
inference on smaller models, while the GPU backend is faster for
inference on larger models. Inference times of Keras.js on the CPU
and GPU backend are basically the same.

We can observe that for all the frameworks on the CPU backend,
the inference time increases when the model becomes complex. In
particular, when the width increases, the time increases sharply
(about two times as the model width doubles). Similar to the train-
ing tasks, such a result also reflects that these frameworks do not
optimize the large-scale matrix operations in the process of forward
propagation on the CPU backend. TensorFlow.js and WebDNN on
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Figure 4: Average inference time (ms) on one sample under different model complexities.

the GPU backend do not exhibit this problem, but Keras.js on the
GPU still suffers from this problem.

4.4 Takeaway

Based on the above results, we can see that in small-scale fully-
connected neural network which the browser is capable of, Con-
vNet]S performs the best for both training and inference. However,
since ConvNet]S is no longer maintained and has fewer functional-
ities, developers may need to choose some alternatives.

Tensorflow.js is the only framework that can take advantage
of GPU to accelerate training processes. It is feature-rich and has
comparable performance with ConvNet]S. So TensorFlow.js is a
good choice for both training and inference. We do not recommend
using GPU as the backend on small models because the advantage
of GPU’s computation power is not fully exploited.

Finally, we are interested in why ConvNet]S has the best perfor-
mance for all the tasks among these frameworks. Given the same
model of which the process logic is the same, the performance
difference is likely to be accounted by the different implementation
details. To this end, we compare the function call stack of ConvNet]S
with that of TensorFlow.js when doing the same training task. It is
surprising to find that the depth of the call stack of ConvNet]S is
only 3 while TensorFlow.js is 48! Such a result suggests that one
possible reason for the performance difference among different
frameworks is the deep call stack that costs a lot of computation
resources.

5 COMPARISON WITH NATIVE
FRAMEWORK

In this section, we study the third research question, i.e., how big
is the performance gap between running DL in the browser and
on the native platform? To this end, we compare the performance
of TensorFlow.js and the native TensorFlow in Python, both of
which are released and maintained by Google and have similar
APIs, making the comparison fair enough.

We study the performance gap from two aspects. On one hand,
we leverage well-known pre-trained models to compare the perfor-
mance when running inference tasks on TensorFlow.js and native
TensorFlow. On the other hand, we use decision tree analysis to
distinguish the factors contributing to the performance gap. We
use the same laptop as the one used in the experiments of the last
section. We install the latest TensorFlow in Python (version 1.11.0)
on the laptop.

5.1 Inference Based on Pre-Trained Models

We use the pre-trained models officially provided by the Keras to
measure the performance of TensorFlow.js and native TensorFlow
when doing inference tasks on these classical models.

5.1.1 Limitations of TensorFlow.js and browser constraints. Keras
officially provides 11 pre-trained models. Although these models
can work using native TensorFlow, we encountered a series of errors
when we run them using TensorFlow.js in the browser. These errors



Table 4: Selected Keras pre-trained models.

Model Name Pre-trained | Trainable Computation
Model Size | Parameters | (FLOPs)

MobileNetV2 14MB 3.5M 7.2M

DenseNet121 33MB 8.0M 16.3M

Xception 88MB 22.9M 46.0M

InceptionV3 92MB 23.8M 47.8M

ResNet50 99MB 25.6M 51.4M

TensorFlow nGPU

TensorFlow.js CPU

Table 5: Contributing factors to the performance gap.

I TensorFlow CPU I TensorFlow.js iGPU

o
=

<L

Inference Time (ms)
=

MobileNetv2 ResNet50 DenseNet121 Xcebtion lncepfionv3

Figure 5: Inference time on pre-trained Keras models. The
y-axis is on log scale.

imply the limitations of TensorFlow.js itself as well as constraints
imposed by the browser.

For the model of NasNet Large, the browser throws out the error
message “truncatedNormal is not a valid Distribution”. For the
model of ResNet V3, the browser throws out the error message
“Unknown layer: Lambda”. The reason for these two errors is that
TensorFlow.js is still under development and so far has offered only
a limited number of support for the converted model. Many user-
defined operations are not supported by TensorFlow.js, e.g., models
with control flow operations in RNNs are not yet supported.

When we try to use VGG16 or VGG19, the browser throws out
the error message “GL OUT OF MEMORY”, meaning that the GPU
memory is overfilled. The reason is that the VGG16 model applies
for more than 1GB GPU memory. However, it should not be an
issue since the GPU memory of our experiment laptop is 8GB. As a
result, such an error is due to the browser constraints.

After trying all the models, we finally have 5 models that can
be correctly converted and run on the browser. The information
of these models are listed in Table 4. The number of trainable pa-
rameters is obtained by the build-in summary () method of tensor-
flow.keras, and the computation complexity (Floating Operations)
are obtained by tensorflow.propfiler.profile() method.

5.1.2  Results. Figure 5 shows the inference time for each model.
It can be seen that the inference time of TensorFlow.js on nGPU
is comparable (1x-2x slower) to native TensorFlow’s. The most en-
couraging result is that the performance of TensorFlow.js on the
iGPU backend is better than that of native TensorFlow on the CPU
backend. This result is not surprising considering the computation
capability of integrated graphics card and CPU. However, since
traditional native DL frameworks do not support integrated graph-
ics card for acceleration, DL tasks can benefit a lot from browsers
in such a case with the help of integrated graphics card that is
common on current devices.

Under the real-time requirement of client-side DL, if users want
to achieve the experience of 10FPS (frame per second), they need

Network Type | Factor Range
Backend CPU, GPU
Task Type | training, inference
DNN
Depth 1,2,4,8,16
Width 64, 128, 256, 512
Backend CPU, GPU
Task Type | training, inference
CNN Depth 6,9, 15, 27
Width 200, 400, 800
Backend CPU, GPU
RNN Task Type | training, inference
Depth 1,2,3
Width 4,8, 16, 32, 64, 256

to consider using a more powerful standalone graphics card. The
Mobile Net model accelerated by iGPU can also meet the require-
ment. If the requirement is 1FPS, iGPU is also fully capable. But if
only CPU can be used, then these common models are too heavy
to run in browsers.

5.2 Decision Tree Analysis

In order to deeply reveal how different factors of DL tasks influ-
ence the performance gap between DL in browsers and on native
frameworks, we build a predictive model based on decision tree
analysis to study the factor importance.

5.2.1 Experiment Setup. We consider 4 factors that influence the
performance gap between DL in browsers and on native platforms
as shown in Table 5, including backend (CPU or GPU), task type
(training or inference), as well as depth and width that represent
the model complexity. In the DNN and RNN models, width refers
to the number of neurons of each layer. In the CNN models, width
refers to the number of kernels used in the convolution layer. For
each of DNN, CNN and RNN, we choose one model from the Ten-
sorflow.js official examples. The DNN and CNN models are used to
recognize handwritten digits on the MNIST dataset, and the RNN
model is to perform text generation from Nietzsche’s writings. The
range of depth and width is selected according to the values set in
Tensorflow.js official examples.

In our experiment, we build and run the DNN, CNN and RNN
models under different configurations using TensorFlow.js and na-
tive TensorFlow, respectively. Each configuration is a combination
of values for the factors above. We measure the execution time of
each configuration as the average time per batch for training tasks
and average time per sample for inference tasks on two platforms.
We use the ratio of the execution time on TensorFlow.js over that
on native TensorFlow to quantify the performance gap.

5.2.2 Methodology. We run the decision tree algorithm with sklearn [10]

to predict the ratio of execution time between TensorFlow.js and
native TensorFlow. The decision tree depicts the relative impor-
tance of contributing factors. Intuitively, factors close to the root
of the decision tree affect the time ratio more than those near the
leaves. This is because the decision tree chooses to do the splitting
of the nodes according to the Entropy-Information Gain criterion.
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Figure 6: Decision tree to analyze the time ratio of TensorFlow.js over native TensorFlow on DNN, CNN, and RNN Models.

In other words, the decision tree places the important factors near
the root to gain the best prediction of splits.

Based on the results, we first produce a fully grown and unpruned
decision tree for all the factors. In this way, each leaf contains only
one configuration. Then we set the depth of the tree to the number
of factors, in order to prevent using a factor several times on one
path. Figure 6 shows the decision trees for DNN, CNN, and RNN.

5.2.3 Results. The execution time of TensorFlow.js is longer than
native TensorFlow in almost every configuration.

Backend is the most important factor contributing to the per-
formance gap. The ratio of execution time on the CPU backend is
much higher than that on the GPU backend. For example, the ratio
decreases from 44.7 to 4.4 for training tasks when the DNN model
with depth over 3 and width over 192 runs on the GPU backend
instead of on the CPU backend. The extreme case happens on the
CNN. On the CPU backend, there is a wide range of the ratio from
below 5 to over 2200 (when depth is less than 7.5 and width is over
600). However, when doing inference task on the GPU backend
with depth over 12 and width over 600, TensorFlow.js performs
as fast as native TensorFlow. This is because CNN makes use of
the powerful computation capability of GPU when the model is
large enough, yet not exceeding the upper bound of the browser
memory.

The second most important factor is task type for all the three
models. Performing training tasks exhibits a higher ratio, while the
performance gap on inference tasks is small. For example, for the
DNN model on the CPU backend, training tasks of TensorFlow.js
perform 33.9 times slower than native TensorFlow on average, and
inference tasks of TensorFlow.js perform 5.8 times slower than
native TensorFlow on average.

The decision trees of DNN and RNN both suggest that the im-
portance of depth and width depends on which backend the task
is taken on. On the CPU backend, the importance of width out-
weighs that of depth, while depth plays a more important role on
the GPU backend. However, in the case of CNN, width plays a more
important role to the performance gap than depth for training tasks.

6 IMPLICATIONS

Table 6 summarizes the findings and implications of our study.
Specifically, we draw implications for three stakeholders of DL
in browsers: application developers, DL-framework vendors, and
browser vendors. For application developers, we give recommen-
dations on how to choose frameworks for DL in browsers, how
to optimize the model, as well as how to select the backend. For

DL-framework vendors, we present some advice on encoding of
model files and optimizing the call stack. For browser vendors, we
suggest on the utilization of system resources.

7 RELATED WORK

To the best of our knowledge, this paper is the first study to char-
acterize the DL in browsers. So we survey related work on general
client-side DL and performance measurement of DL systems.

7.1 Client-side Deep Learning

With the emphasis on privacy, personalization and timely response,
it is a trend to conduct DL directly on the clients where the data
is generated, especially on mobile devices. Lane et al. [27] studied
the feasibility of using DL for typical mobile sensing tasks, such
as activity recognition. Yao et al. [40] proposed DeepSense, a uni-
fied DL framework for processing time-series mobile sensing data.
Despite of the increasing computation power of mobile devices,
typical DL tasks are still of heavy workload for these resource-
constraint devices. Several optimization methods were proposed
to improve the performance of client-side DL. One line of work
focuses on the DL models. Han et al. [22] proposed deep compres-
sion to compress the DNN through a three-stage method: pruning,
trained quantization and Huffman coding, which showed a consid-
erable reduction in terms of the storage requirements of DNNs. The
other line of work leverages the cloud and edge environment to
offload the computation-intensive tasks to powerful computation
nodes [29]. Kang et al. [26] proposed Neurosurgeon, a lightweight
scheduler to automatically partition DNN computation between
mobile devices and data centers at the granularity of neural net-
work layers. Wang et al. [39] designed Arden, a cloud-based deep
learning framework for mobile devices. The framework partitions
the DNN and offloads the resource-hungry training and complex
inferences tasks to the cloud.

Anther usage scenario of client-side DL is to support the dis-
tributed deep learning. Teerapittayanon et al. [37] proposed dis-
tributed deep neural networks (DDNNs) over distributed computing
hierarchies, consisting of the cloud, the edge (fog) and end devices.
Ichinose et al. [24] proposed a pipelined method for distributed
DL processing between mobile devices and the cloud to reduce
the amount of data sent to the cloud and protect the privacy of
users. Meeds et al. [33] designed MLIitB, a prototype DL frame-
work capable of performing large-scale distributed computing with
heterogeneous classes of devices using Web browsers.



Table 6: Major findings and implication

s of DL in browsers.

No.| Name Finding Implication Stakeholder
1 Specific DL Tasks | Frameworks supporting DL in browsers are emerging and being actively | It is better for developers to use general-purpose DL | Application
Support maintained. Most of them are not for general purpose and support only a | frameworks like TensorFlow.js to implement their DL- | Developer
specific subset of DL tasks. powered Web applications.
2 Model Complex- | The width of DL models dominates the performance variation of both | Developers should pay attention to the width of their | Application
ity training and inference tasks considering the complexity of DL models. models, and balance the width and required perfor- | Developer
mance if possible.

3 Model Loading For inference tasks, loading and warming up the DL model accounts for | Developers should pre-load and warm up the model | Application
much longer time than running the inference task itself. The warmup | before using it for inference. Developer
time on the integrated graphics card is generally shorter than that on the
standalone graphics card.

4 Benefits  from | For popular pre-trained models like MobileNet and Inception, TensorFlow.js | It is possible to develop Web applications rather than | Application

GPU has comparable performance with native TensorFlow when running infer- | native applications for these tasks. Developer
ence on the standalone graphics card.

5 Benefits from In- | TensorFlow.js running on the integrated graphics card works better than | For devices without standalone GPUs, developers can | Application

tegared Graphics | native TensorFlow running on CPU backend. use the browser for DL tasks, leveraging integrated | Developer
Card graphics card for acceleration.
6 Model File Encod- | Model file encoded in JSON is much bigger (7x) in size than that encoded | It is better to encode DL models in binary files. DL-
ing and Size in binary, and significantly increases the model loading time. Framework
Vendor

7 Framework Call | The call stack of TensorFlow.js is much deeper than that of ConvNet]S, | Framework vendors could leverage compiler optimiza- | DL-

Stack pulling down the performance. tion techniques to reduce the call stack when the DL | Framework
models are used in the production environment. Vendor

8 System Resource | The capability of multi-core CPU cannot be utilized when running DL tasks | JavaScript engine should take into account the support | Browser

Utilization on the CPU backend in browsers since the JavaScript program is single- | of multi-process or scheduling among multi cores for | Vendor
threaded. GPU memory usage is limited in 1GB, failing to load and run | better performance of DL tasks in browsers. The GPU
larger models. memory should be configurable for DL tasks.

7.2 Performance Measurement of Deep
Learning

In recent years, researchers have conducted studies to measure the
performance for various kinds of deep learning tasks. Liu et al. [30]
evaluated the performance of leading DL methods for object detec-
tion. Guignard et al. [21] presented detailed characterization results
of a set of archetypal state-of-the-art DL workloads to identify the
performance bottlenecks and to guide the design of prospective
acceleration platforms in a more effective manner. Shi et al. [36]
evaluated the performance of four state-of-the-art distributed DL
frameworks over different GPU hardware environments. They built
performance models of standard processes in training DNNs with
SGD, and then benchmark the performance of the frameworks with
three neural networks (i.e., AlexNet, GoogleNet and ResNet-50). As
for DL on mobile devices, Ignatov et al. [25] studied state-of-the-art
DL in the Android ecosystem and described available frameworks,
programming models and the limitations of running Al on smart-
phones.

Although many JavaScript-based frameworks have been pub-
lished to support DL in browsers, there is no comprehensive study to
understand their characteristics and performance. Some researchers
focus on the possibility of supporting DL in browsers by measur-
ing the low-level browser capabilities. Malle et al. [31] presented a
comparison study between native code and different browser-based
implementations: JavaScript, ASM.js as well as WebAssembly on a
representative mix of algorithms. However, these algorithms are not
DL tasks. Their goal is just to show that the browsers performance
is now comparable to and even exceeds native binary performance.

8 CONCLUSION

This paper made the first study on understanding the feasibility and
performance of deep learning in Web browsers. We chose 7 recently
emerging JavaScript-based DL frameworks and comprehensively

revealed which type of DL tasks have been supported. We measured
the performance of different frameworks when doing different DL
tasks in browsers, and compared with the native DL framework to
investigate the performance gap. Although the in-browser DL is
still at the early stage, some interesting findings, e.g., the compara-
ble performance of JavaScript frameworks to that of native ones on
some types of DL tasks and the benefits gained from the integrated
graphics card, can be useful and help guide the DL-powered Web
applications. Additionally, we have also found that there are some
potential space of improvement for currently in-browser DL frame-
works, and plan to realize some practical solutions. We believe that
our work can shed a light on the future of Web applications in the
Al era.
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