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作品名称 心颖精割——基于飞桨的 Heart—DualSeg 及瘢痕检测智能诊疗平台 

团队名称 心灵捕手队 

参赛单位 哈尔滨工业大学 

团队队员基本信息 

姓名 院（系）全称 专业（全称） 年级 毕业时间 联系电话 邮箱 团队分工 

张维浩 
计算机科学与

技术学院 

计算机科学

与技术 
大二 

2026.6 198274848

23 

2132404579 

@qq.com 

队长 

林子健 
计算机科学与

技术学院 

计算机科学

与技术 
大二 

2026.6 133777382

19 

1992715852@qq.

com 

队员 

郑书航 
计算机科学与

技术学院 
人工智能 大二 

2026.6 198354507

35 

2451752823 

@qq.com 

队员 

团队指导教师信息 

姓名 院（系）全称 职称 研究方向 联系电话 联系邮箱 

李钦策 
计算机科学与

技术学院 
副研究员 

医疗人工智能、

生物信息技术 

15964495066 qinceli@hit.edu.cn 

团队成员优势描述 

郑书航：获得“全国大学生数学竞赛”国家三等奖，“计算机设计大赛（人工智能赛道）”国家三等

奖，参与校 RobotMaster 社团的物流机器人项目，负责视觉控制相关工作，参与华为鸿蒙菁英班培训为“健

康生活应用”添加新的功能。能够熟练使用 pytorch 等大模型训练工具，会 springboot 和 Vue3 等网页开发

工具并自我搭建过一个博客平台。本次项目中主要负责网页的前后端搭建和全心脏分割模块的模型训练及

相应的文书工作 

   林子健：获“计算机设计大赛（人工智能赛道）”国家三等奖，全国大学生数学建模大赛获省级一等

奖，参与华为鸿蒙菁英班培训。在医学影像处理等方面有一定的技术背景，负责图像配准算法和相应的文

书工作。 

   张维浩：获得“全国大学生数学竞赛”省级三等奖，全国数学建模大赛省一等奖，美国数学建模大赛 H

奖，“计算机设计大赛（人工智能赛道）”国家三等奖，参与华为鸿蒙菁英班培训。在多模态与计算机视

觉方面有一定开发经验，并多次担任大赛答辩员，此次任务负责心脏瘢痕检测功能训练以及相应的文书工

作。 
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项目信息表 

 

项目基本简介 

该项目的设计理念在于集成两个创新的不同方法（多模态与单样本配准）的心脏分割模型——基于 3D-

Unet 的多模态全心脏影像分割算法与基于多尺度子网络级联配准的心脏 MRI 单样本分割技术综合分割

患者的心脏影像，得到的分割结果采用创新的基于 4D 卷积分解的心脏 MRI 心肌瘢痕检测算法结合文心

ERNIE Bot 进行人工智能辅助评估患者心脏疾病风险。 

项目参赛工具 项目应用场景 

已选工具（必选） 飞桨深度学习平台 技术方向 
多模态图像分割，单样本配

准，心脏瘢痕检测 

已选工具（必选） 

文心 ERNIE SDK  

AI Studio 计算模型生成平台  

  

应用行业 医疗 

其他用到的硬件 Nvidia 4090 Ti GPU 数据来源 开源数据 

其他技术/工具  核心突破点 

多模态 3D 图像分割，基于 4D

卷积分解心肌瘢痕检测，基于

多尺度子网络级联配准的单样

本分割 

 项目研发来源 

预期效果 

分割功能包括基于多模态（CT

与 MRI）影像训练的 3D-Unet 全

心脏分割以及基于多尺度子网络

级联配准的心脏 MRI 单样本分

割，医生可选择比较分割效果进

行评估诊断。最后用基于 4D 卷

积分解的心脏 MRI 心肌瘢痕检测

模块实现全自动的检测患者分割

后的心脏影像，并上传信息到文

心 ERNIE Bot 进行人工智能辅助

评估。 

研发来源 

☑ 国家/省部级/地方科研项目 

 企业/其它横向合作项目 

□  独立研发 

 以上均不是（请描述） 

项目其他合作机构 与哈医大一院合作计划部署云平台 
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一、选题逻辑 

1.1 项目背景 

1.1.1 社会背景 

心血管疾病是全球第一大致死疾病(CVD)，它已经成为全球面临的主要健康问题之一，

每年因心血管疾病死亡的人数远多于任何其他疾病死亡人数。根据最近最新发布的《中国心

血管健康与疾病报告 2023》[1]，自 1990 年以来，有 CVD 危险因素的人群巨大，加之人口老

龄化加速，CVD 仍是我国居民健康的最大威胁之一。随着我国经济的发展，国民生活方式及

饮食结构的改变，CVD 对居民健康的影响日益显著，CVD 在我国的发病率仍在持续上升。

2021 年，农村和城市地区的 CVD 死亡比例分别占总死亡原因的 48.98%和 47.35%。其中，

与心脏诊断相关的病状是发病率最高的几种类型，如冠心病、心肌病、先心病等。 

1.1.2 技术背景 

心血管疾病是全球主要死亡原因。近年来，我国心血管领域的研究呈现蓬勃发展势头，

数量与质量都不断提升。然而在心脏疾病的临床诊断上仍有许多不足与困难需要完善和解决

的。CT 和 MR 是非侵入性心血管解剖检查的主要成像方式。分割整个心脏，特别是标记预

定义的子结构，对于后续的结构和功能分析、诊断和治疗至关重要。此外，心肌纤维化/瘢痕

成像能提供诊断和预后信息，心脏磁共振(CMR)晚期钆增强(LGE)也是评估缺血性和非缺血

性心脏病心肌疤痕的金标准[7-8]。 

CT 能辨别有密度差的组织（肌肉与骨骼），空间分辨率更高，而 MRI 对软组织有较好

的分辨力，提供的信息量更多。利用多模态技术综合 CT 与 MRI 两种模态信息进行分割能降

低信息不确定性，提高临床诊断和分割准确性。 

钆基造影剂通常用于心脏磁共振(CMR)成像，以表征心肌疤痕组织，最近使用深度学习

的研究提出一种新的基于壁运动异常(WMA)全心脏成像在缺血性和非缺血性心脏病中的疤痕

检测，使患者免于不必要的钆造影剂侵入以及减少钆污染。 

 
图 1-1 心脏疾病诊断的一些不足 

心脏疾病诊断面对着需要操作人员手动标注分割，技术水平依耐性强，诊断结果主观

性；在跨医院跨科室诊疗中检查数据集的格式和标准不统一；大型成像设备费用高，时间

长；在检测心脏瘢痕等病变方面往往分布不均，造影剂侵入等不足。本项目针对这些问题，

开发了集两种分割方式（多模态与单样本）供医生对比评估与心脏瘢痕自检测结合文心人工

智能辅助诊疗平台，依托“全心脏解析的混合损失引导卷积网络”与“基于配准的心脏磁共

振图像单样本分割学习”项目，开发一款人工智能辅助医生诊断治疗平台。 

1.2  创意性与创新性说明 
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目前市场上已有一些相似的项目和服务，尤其是在医学影像分析和人工智能辅助诊断领

域。例如 Google 的 DeepMind 和 IBM 的 Watson Health 都已经在开发 AI 辅助的医学影像诊

断工具，Zebra Medical Vision 和 Arterys 心脏影像自动分割和分析的工具。在医学影像分割领

域，国外产品占据垄断地位，是我国面临的关键技术问题之一。外企产品价格高昂，同时我

国内也面临着不开源的问题。 

本项目创新的采放入两种分割算法，旨在建立精准全面的心脏影像分割的辅助诊断系统，

医生可对比患者已有的个体化数据和不同的影像信息，采取最合适的心脏分割算法——基于

深度学习的多模态心脏分割或者基于配准的心脏磁共振图像单样本分割，分割后结果采取最

新的基于 4D 卷积分解的心脏 MRI 心肌瘢痕检测算法进行心脏疾病风险评估。 

在研究基于深度学习的多模态心脏影像分割中，传统的分割技术通常采用 U-Net 神经网

络结构，本项目在U-net基础上加入类似残差块的短路连接(skipping connect)提取多尺度信息，

并扩展为 3D 体医学影像处理，减少在降维时损失的深度与层间信息，并引入输入级融合策略

实现多任务与多视图的训练，最终实现多模态全心脏的分割。 

图像配准可以达到预测目标图像的目的，传统的配准方法易产生较高的计算成本[2-4]，且

优化可能陷入局部最小值，这也限制了其在临床中的应用。另外，配准网络采用的卷积操作是

基于局部邻域的[5-6]，单独的网络对大形变的学习能力是有限的。为了实现小样本上的分割任

务，增强了特征的关联学习，我们小组创新性地提出了无监督的一种基于多尺度子网络级联的

模型，旨在从全局到局部，利用逐级细化的方式增强对大尺度形变的理解和学习。 

在进行分割后我们采用全新的基于 4D 卷积分解的心脏 MRI 心肌瘢痕检测，基于壁运动

异常(WMA)的缺血性患者疤痕检测面临着疤痕的存在可能并不总是伴随着 WMA，忽略了数

据的四维性质(3D+时间)，缺乏对大型异构数据集的研究等问题，我们小组使用一种用于心肌

疤痕检测的时空残差注意神经网络，更好地检测可能患有心肌疤痕的患者，使患者免于不必要

的钆造影剂管理，降低成本，减少环境污染。 

二、需求与市场价值 

2.1  用户需求贴合度 

本项目旨在深化中国战略，专门为各级医疗机构及其医务人员设计，特别关注心脏领域的

专业机构与专家。我们的技术主要集中于心脏图像分割和心脏瘢痕检测，旨在服务心脏临 

床手术，提高手术成功率并优化患者的恢复过程。 

项目的目标受众是实施心脏或心血管手术的医生，旨在辅助他们进行手术前的分析与诊

断，同时为增强现实技术的应用提供新发展机遇。增强现实技术已成为未来临床手术的重要趋

势，如北京大学人民医院最近成功采用增强现实技术进行胸外科手术，获得了积极反响。 

增强现实技术通过在虚拟环境中引入现实场景信息，增强用户体验的真实感，在手术中提

供无接触式的信息检索、术后回顾和远程教学。其中，外科医生可以实时查看患者的心脏结构

和生理功能，这显著提升了对复杂解剖结构的理解，降低手术风险，提高手术成功率。 

项目的重要子系统是三维重建任务，提供的三维心脏图像分割和瘢痕检测功能在心脏相

关手术领域至关重要。通过三维精确重建，医生可以提前进行虚拟手术模拟，规划最佳操作路

径，有效缩短手术时间并降低并发症。此外，三维心脏模型的可视化有助于医生详细向患 

者解释手术步骤、预期效果和风险，增强患者信任感和安全感，提高满意度。本项目还提供功

能丰富、操作简便的 Web 界面，辅助医生进行心脏图像分割任务，并包含文心一言、医患 

绑定服务及评语功能，便于医生与患者之间的有效沟通和交流。 
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图 1-2 平台功能贴合用户需求 

本项目专注于心脏及心脏血管领域的医疗机构和手术中心，针对虚拟现实手术模拟和增

强现实手术导航市场。随着心血管疾病发病率的提高，我们的技术和服务旨在提高心脏分割

系统的灵敏性和清晰性，为术前准备提供更多可视化材料，提高手术的精确性和可控性，降

低手术风险和难度，满足市场需求，提供优质的手术辅助服务。 

项目服务于心脏手术医生和患者，在增强现实手术和机器人手术中发挥重要作用。面向

医疗设备制造商、医疗机构、VR 设备生产商和冠脉介入机器人生产商，市场定位精准，技

术优势明显，满足患者对高质量手术的需求。 

2.2  市场价值及可推广性 

2.2.1 可普及和泛化性 

世界心脏病联盟（WHF）发布的《2023 年世界心脏报告》指出，心血管疾病（CVD）

几十年来一直是全球主要死亡原因。2021 年，2050 万人死于心血管疾病，占全球死亡总数

的三分之一。1990 年和 2019 年，心血管疾病死亡人数分别为 1210 万和 1860 万。《中国心

血管健康与疾病报告 2023》指出，自 1990 年以来，中国在解决心血管病（CVD）“救治

难”问题上取得了显著进展。然而，由于不健康生活方式的流行、巨大的 CVD 危险因素人

群和加速的人口老龄化，CVD 仍是中国居民健康的最大威胁。2021 年，CVD 在农村和城市

死因中分别占 48.98%和 47.35%；每 5 例死亡中就有 2 例死于 CVD。 

在心血管介入手术中，虚拟现实（VR）和增强现实（AR）技术正成为提升手术精确性

和导航准确性的关键手段。这些技术为外科医生提供实时三维心脏模型和重要解剖结构的可

视化，显著提高手术成功率。VR 技术可以模拟手术环境，帮助医生进行练习和准备，而 AR

技术在手术过程中将重要信息叠加在患者实际影像上，提供更直观的导航支持。

         

图 2-1 1990 至 2019 年度全球因心血管疾病死亡的趋势  图 2-2 同年度全球标准化心血管疾病死亡率趋势 

 

这种技术的广泛应用为其市场普及提供了坚实的基础。此外，值得注意的是，目前国内

在虚拟现实和增强现实手术技术的产品数量仍然较少，市场主导地位主要由国外品牌占据，

因此国内市场依然具有广阔的发展机会。同时，本项目所用的方法，也有望在脑血管和外周
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血管等介入手术中得到迁移应用，为相关领域的临床实践提供更多支持。 

2.2.2 外部验证与调查 

近年来，主打“VR/AR/MR+医疗”业务的企业迅速崛起，融资活动频繁。据青亭网不完

全统计，2020 年全球有 13 家企业获得融资用于 VR/AR+医疗服务项目研发（AR 3 家、VR 10

家）。2021 年 7 月，全球又有 3 起 VR/AR+医疗领域的融资并购。根据 Markets & Markets 分

析到 2022 年，全球医疗情景模拟软件和装备市场份额将从 2017 年 12 亿美元上升至 25 亿美

元。 

VR、AR 医疗公司收录 表 2-1 

企业 国家 领域 成果 

Proprio 美国 
增强/虚拟现实和机器

人技术的专有平台 

在西雅图儿童医院和华盛顿大学医学

院等医院开展神经和骨科手术试点项

目 

ImmersiveTouch 美国 

Oculus Rift 头显、微

创技术和真实手术模

拟 

约翰霍普金斯大学、芝加哥大学和德

克萨斯大学医院都使用 

ImmersiveTouch 平台来协助他们的外

科医生研究和规划手术。 

TrueVision 美国 数字显微镜平台 

与 OCULUS Pentacam AXL 合作，在

白内障和屈光眼手术中使用 3D 成像

和实时分析计算机指导软件。 

EchoPixel 美国 
交互式虚拟现实手术

平台 

使用各种图像数据集来生成解剖学上

正确的、特定于患者的 3D 图像。  

 

 随着人工智能技术和虚拟现实的快速发展，增长迅速应用于医疗领域。AR 对医生和患

者都有帮助，患者可以通过 AR 了解他们的疾病，医生可以进行高精度、复杂的手术。微软

的 HoloLens 眼镜用于查看人体结构，飞利浦公司的 AR 应用用于监测患者的生命体征，

IIIusion 的 3D 增强现实装备为医生们提供了帮助。虚拟现实手术系统的发展仍在不断涌现创

新，临床不断优化和应用扩展仍在进一步探索，市场仍然充满巨大机遇。随着一些国内企业

开始布局，AR 医疗领域的配套技术的发展亟需提上日程，以为更自动化、便捷化的医疗场

景提供助力。 

2.2.3 市场推广模式和潜在合作对象 

2.2.3.1 市场推广模式 

通过市场研究，我们对项目的市场推广进行了初步设想。首先，考虑与医学研究机构或

医疗技术公司合作，以获取宝贵的反馈和支持，并为后续推广奠定基础。 

基于医疗数字化和远程化的趋势，开发基于云计算的在线平台或移动应用是具有前景的

方向。这种方式能够降低使用门槛，扩大项目的影响力和使用率。 

积极参与医学相关的展览、会议或线上线下的学术交流活动，是推广项目的有效途径，

可以展示技术优势，并接触更多的业内专家和潜在合作伙伴。这些尝试可以为未来的发展积

累经验，并逐步建立项目的知名度和影响力。 

2.2.3.2 潜在合作对象 

考虑到自身处于大学阶段，初步的合作可以从校内或其他高校的科研项目开始，与医学

影像相关实验室、教授或导师进行探讨，我们学习计算学部感知研究计算中心也与哈医大有

交流项目。这种合作不仅有助于项目的学术性提升，还能为技术开发提供实践基础。 

医学影像设备制造商和医学影像软件公司是未来的潜在合作伙伴，通过参与学术项目或

实习，可以了解这些企业的运作模式和技术需求，为将来的深入合作做准备。 
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保险公司和健康管理机构也是值得探索的合作方向，考虑到它们对心脏疾病预防和管理

的重视，如果项目能在健康筛查和风险评估方面展现潜力，有望引起机构的关注并促成合

作。 

三、技术方案 

3.1  项目技术平台及功能框架 

3.1.1 技术平台 

本作品依托百度飞桨开源深度学习平台，并在飞桨 AI Studio 星河社区的 Notebook 项  

目中指定 python 脚本，完成后端部署。 

3.1.2 功能框架 

如图所示，作品技术功能主要分为三个板块，主要分为心脏分割与瘢痕检测两大功能。

其中分割功能包括基于多模态（CT 与 MRI）影像训练的 3D-Unet 全心脏分割以及基于多尺

度子网络级联配准的心脏 MRI 单样本分割，医生可选择比较分割效果进行评估诊断。最后用

基于 4D 卷积分解的心脏 MRI 心肌瘢痕检测模块实现全自动的检测患者分割后的心脏影像。 

网页平台如图所示，项目还采用 springboot 和 vue3 作为基础框架开发，使用基于

MySQL 的 Mabatis 作为后端数据库，用户密码采用 Md5 算法，确保患者的个人隐私数据不

会泄露同时借助个人令牌保存 id 方便数据库查询。参考了 SAM 大模型的 web 界面实现心脏

3D 图像网页可视化。 

考虑到医生和病人之间的绑定关系，我们专门设计了医生与病人的在线答疑系统，医生

可以为病人添加心脏 nii 图像并添加自己的评语。对病人我们引入了文心一言大模型，可以

帮助病人理解医生的评语，并根据图像反映的数据给出人工智能的辅助诊断。 

 

            
图 3-1 技术流程框图                                            图 3-2 医疗平台初展示 

3.2  具体技术路线 

3.2.1 数据获取及预处理 

（1）多模态心脏分割模块 

本模块使用的数据集来自于 2017 年多模态全心脏分割挑战（Multi-Modality Whole Heart 

Segmentation Challenge 2017）。该数据集包含 60 个 CT 图像和 60 个 MR 图像，其中 20 个用

于训练，40 个用于测试。数据集中的图像是在不同受试者和设备上收集的，涵盖了多种心脏

结构和不同的成像条件。这种多样性使得数据集在心脏分割任务中具有挑战性，同时也为模型

的训练提供了丰富的样本。 
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图 3-3 （a）未使用和已使用 CLAHE 的 CT 切片，（b）未使用和已使用 CLAHE 的 MR 切片 

 

为了消除无关的噪声干扰，增强图像对比度以突出目标区域，提高图像质量并增强后续分

割算法的性能，我们采用了对比度限制自适应直方图均衡化（CLAHE）技术对图像数据进行

预处理。具体步骤如下： 

1） 局部对比度增强：CLAHE 通过在每个图像切片上应用局部直方图均衡化 

2） 减少不均匀性：CLAHE 能够有效减少图像中的不均匀性，避免全局直方图均衡化可

能引起的过度增强问题，从而保留更多的细节和结构信息。 

3） 块大小设置：将 CLAHE 的块大小设置为 8×8，以确保在增强对比度的同时，能够有

效捕捉到图像中的细微结构。 

（2）基于配准的单样本分割模块 

心脏磁共振有较多的公开数据集，本模块主要使用括 2017 年 MICCAI 自动化心脏诊断

挑战(Automated Cardiac Diagnosis Challenge，ACDC)[7]提供的公开数据集。ACDC 数据集扫

描是在屏气状态下进行的，采用了回顾性或前瞻性门控，在短轴方向采集了 bSSFP 序列图

像，而本模块主要基于 ACDC 中的 bSSFP 序列完成研究的。 

本模块基于传统方法设计了一种特定于心脏 MRI 的初始刚性配准方法，以粗略地完成不

同图像中感兴趣组织结构的对齐，并且还统一了待配准图像的整体亮度，有效地辅助后续可

形变配准任务。如图 3-2 为数据预处理过程图，具体步骤描述如下： 

 
图 3-4 数据预处理过程 

 

步骤 1：多尺度掩膜构建。图 3-2 (a)中所示为构建多尺度掩模的示例。 

步骤 2：目标图像二值化。使用 C 均值聚类将每个切片的像素点分为五个聚类。聚类中具

有最高和最低亮度的像素点分别被认为是前景(标记为 1)和背景(标记为 0)，以排除异常值。通

过 OTSU 方法将剩余的像素点分类为前景或背景。 

步骤 3：预配准。通过寻找并对齐左心室的质心进行预配准。每个尺度掩模都使用基于平
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方差和(SSD)的模板匹配方法在目标图像的相应切片中找到与之最相似的区域。 

步骤 4：亮度一致性调整。为了确保基于亮度相似性的可形变配准网络生成精确的形变场，

将根据预配准结果校正待配准数据的整体亮度，使之达到一致。 

步骤 5：图像裁剪。基于步骤 3 中获得的质心，将所有切片裁剪为相同大小。通过堆叠经

预处理后的所有切片创建初步对齐且亮度一致的 3D 心脏 MRI 数据，作为可形变网络的输入。

（3）心脏 MRI 心肌瘢痕检测模块 

采集 10 片夹心片的屏息心电图平衡稳态自由进动序列的影像。数据从 2016 年至 2020

年匿名机构获取，使用多供应商(GE Healthcare, Siemens Healthineers)和不同场强(1.5 T, 3 T)。 

机构审查委员会批准了 CMR 数据用于研究的同意豁免。患者信息的处理符合《健康保险流

通与责任法案》。共纳入 3000 例患者(男性 1697 例，54±18 岁)进行培训和评估。数据分为训

练组(n=2000, 762 个疤痕+)、验证组(n=500, 169 个疤痕+)和测试组(n=500, 199 个疤痕+)。所

有图像在中心裁剪为 128 × 128 的大小，并归一化为固定的强度范围(从 0 到 1)。 

3.2.2 基于 3D-Unet 的多模态全心脏影像分割算法 

3.2.2.1 网络模型结构 

全心脏分割模块采用改进的全卷积网络（FCN）来处理心脏的三维图像数据，这是基于

U-Net 架构的 3D 版本。通过使用 3D 卷积操作，网络能够更好地捕捉空间上下文信息并提高

分割精度。设计中包括跳跃连接，有助于保留低层次特征信息，增强网络对细节的捕捉能

力。采用迁移学习技术和深度监督机制对 FCN 模型进行改进，其中迁移学习技术利用预训练

的 C3D 模型来初始化网络的下采样路径，而深度监督机制通过添加侧路径在不同层次上增强

梯度流，缓解梯度消失问题，提高分割性能。训练过程采用分层深度监督以确保不同层次特

征得到有效反馈，有助于网络更好地学习到不同层次的语义信息。具体的模型展示如下图所

示： 

 
图 3-5 整体框架示意图 

3.2.2.2 损失函数构造 

 在许多实际应用中，尤其是医学图像分割任务中，类别之间的样本数量往往存在显著不平

衡。例如，某些结构（如心脏的左心室）可能占据的体积较小，而其他结构（如右心室）则占

据较大比例。这种不平衡会导致模型在训练过程中偏向于大类别，从而忽视小类别的学习。 

为了解决全心脏分割类别不平衡问题，本模块中提出了一种混合损失函数，结合了加权交

叉熵损失（wCross）和多类 Dice 相似系数损失（mDSC）。这种混合损失函数能够在平衡不同

类别的同时，保留边界细节，改善模型对小类别的学习效果。 

（1）加权交叉熵损失（wCross）过为不同类别分配不同的权重，模型在计算损失时能够更加

关注小类别的样本。其公式为： 

ℒ𝑤𝐶𝑟𝑜𝑠𝑠(𝒳;𝑊) = ∑  

𝑥𝑖∈𝒳

− 𝜂ℓ(𝑥𝑖)lo g 𝑝(𝑦𝑖 = ℓ(𝑥𝑖) ∣ 𝑥𝑖;𝑊) , 𝜂ℓ(𝑥𝑖) = 1 −
|𝒳ℓ(𝑥𝑖)|

|𝒳|
(3 − 1) 
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其中，𝜂𝑦𝑖是类别𝑦𝑖的权重，能够根据类别的样本数量进行调整。 

（2）多类 Dice 相似系数损失（mDSC），基于形状相似性度量，能够自适应地平衡不同类别

的损失。其公式为： 

ℒ𝑚𝐷𝑆𝐶 = −∑ 

𝑐∈𝐶

2
𝑁
∑  𝑁
𝑖  𝒢𝑐

𝑖𝒫𝑐
𝑖

∑  𝑁
𝑖  𝒢𝑐

𝑖𝒢𝑐
𝑖 + ∑  𝑁

𝑖  𝒫𝑐
𝑖𝒫𝑐

𝑖
(3 − 2) 

其中，𝐺和𝑃分别表示真实标签和预测结果的体素值。mDSC 损失能够有效减少类别不平

衡带来的影响，并在整体上提高分割精度。 

（3）混合损失函数 

单一的损失函数无法同时满足类别平衡和细节保留的需求。因此，构建混合损失函数是一

种有效的策略。例如，将加权交叉熵损失与多类 Dice 损失结合，形成如下混合损失： 

ℒhybrid = ℒ𝑤Cross + 𝛼ℒ𝑚𝐷𝑆𝐶 (3 − 3) 

通过调整𝛼的值，可以在保留边界细节和处理类别不平衡之间找到最佳平衡点。 

3.2.3 基于多尺度子网络级联配准的心脏 MRI 单样本分割 

我们团队着手于解决基于深度学习的心脏图像分割模型在临床应用中所面临的挑战。由

于医学图像采集的隐私性和标注的复杂性，带标记的数据较少限制了深度学习模型的应用。 

 

图 3-6 配准流程图 

为了减少对标记数据的依赖并充分利用大量的无标记数据，我们组使用了基于配准技术

的心脏磁共振图像的单样本分割方法。从构建端到端的网络架构出发，提出了一种能够提高

心脏 MRI 单样本分割精度的模型，并简化了训练过程。此外，为了处理不同个体间心脏尺寸

的显著差异，我们还采用了具备感知大尺度形变能力的可形变配准网络。这一网络通过级联

多个不同尺度输入的子网络，实现了心脏 MRI 图像的单样本分割。 

 

图 3-7 网络整体框架 

如图 3-3 所示，该网络的整体框架使用多尺度图像金字塔来构建待配准图像，采用不同

次数的下采样。子网络结构相似，但使用大核卷积层替代普通卷积层，增大感受野，并采用

双分支孪生结构以加强特征关联学习。随着级联子网络层数的增加，输入逐渐恢复至原始尺

度，卷积核尺寸减小，从而实现对局部形变的学习，并逐步完成分割预测。
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图 3-8 子网络结构基础框架 

此外，网络中设计了一个感知掩膜模块来动态生成目标区域的掩膜，用于感知形变图像

和目标区域中的感兴趣目标，减少背景区域的干扰，提供正反馈优化，以提升配准精度。这

个掩膜通过 CNN 网络生成，并通过感知掩膜计算的局部相似性损失明显提升了配准性能。

损失函数是通过性能指标进行模型定向优化，并在可形变配准网络中使用图像整体相似性和

正则化项作为训练的启发函数。这有助于提高形变场的准确性和平滑性，最终定义了总损失

函数如下： 

𝐿 = 𝐿sim + 𝜆𝐿smooth (3 − 4) 

式中，𝐿sim  是图像相似性损失项；𝐿smooth 是正则化项；𝜆 是正则化参数。 

在心脏图像中存在无法完全消除的复杂背景区域，这会导致背景中的像素点被误配准至目

标区域，或者目标区域被映射至相似亮度的背景区域。传统的相似性启发函数无法保证图像配

准精度。因此，为了解决这一问题，我们组基于形变场和形变标签确定了一个感知掩膜，并设

计了一种新的局部区域相似性损失——LRS (Local Regional Similarity)。为了调节候选感兴趣

区域和背景在损失函数计算中的参与度，引入了膨胀系数来表示感知掩膜的扩展程度 LRS 的

定义如下所示： 

LR S(𝐼𝑓, 𝐼𝑚 ∘ 𝒯𝑜
𝑁, 𝜀) = LCC (𝐼𝑓 ⋅ 𝑆(𝐿𝑚, 𝒯𝑜

𝑁, 𝜀), 𝐼𝑚 ∘ 𝒯𝑜
𝑁 ⋅ 𝑆(𝐿𝑚, 𝒯𝑜

𝑁 , 𝜀)) (3 − 5) 

式中，𝐿𝐶𝐶（Local Cross-Correlation）是局部交叉互相关损失函数；𝑆(𝐿𝑚, 𝒯𝑜
𝑁, 𝜀) =

Dilate⁡(Binary⁡(𝐿𝑚 ∘ 𝒯𝑜⁡
𝑁), 𝜀) 是感知掩膜，其中，Binary (⋅) 为二值化函数, 𝐿𝑚 为源图像的真

实标签, Dilate (⋅, 𝜀) 表示用于扩张感知掩膜的形态学膨胀操作, 采用边长为 𝜀 的正方形结构

元素。 

在相似性计算项中，引入了感知掩膜以减小图像背景对配准的不良影响。而在正则化项的

计算中，并未引入感知掩膜，它仍然基于全局位移场的梯度进行计算，以确保网络生成的位移

场具有平滑稳定性，这样更有利于模型的训练和优化。 

3.2.4 基于 4D 卷积分解的心脏 MRI 心肌瘢痕检测算法 

3.2.4.1 深度时空剩余注意网络(ST-RAN) 

我们小组采用一种新的深度时空剩余注意网络(ST-RAN)[8]，该网络利用不同尺度的时空

信息来检测缺血性和非缺血性心脏病的疤痕。我们的模型包括三个主要部分： 

首先，我们利用了一种新的分解 4D (3D+时间)卷积层来提取心脏的 3D 空间特征，并在时

间方向上用了一个深 1D 核来提取心脏运动。其次，利用时空关注意力增强 4D (3D+time)层的

能力，提取丰富的全心特征，同时跟踪帧间的长期时间关系;最后，我们引入了残差注意块，

提取不同尺度的空间和时间特征，以获得全局和局部运动特征，并检测与疤痕相关的对比度的

细微变化。 
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图 3-9 模型整体网络框架图 

1）Conv3Plus1D 层：进行批归一化以减轻数据中的内部协变量移位，应用小正则化效应

和 ReLU 激活函数，然后通过自定义调整大小帧层将输出特征映射大小降低 2 倍。这增加了批

大小(×2)，加速了训练(×12)和测试(×4)，同时保持相同的高性能。 

2）四个残差注意力块：每个块包含应用于输入特征映射的残差注意力和两组 Conv3Plus1D

层，每层后面都有层归一化和 ReLU 激活函数。位于残差块内的层归一化可加速收敛，无需学

习率预热阶段。 

3）投影层：匹配输入数据的最后一个维度和残差块的输出。当使用不同大小的过滤器进

下采样时，投影层将输入数据的最后一个维度调整以匹配新滤波器尺寸，从而将输入和输出加

在一起形成残差连接。这种串联有助于解决由于输入数据的四维性质、三维大体积和长期时间

依赖性导致的梯度消失问题。 

通过使用这些层，网络能够更有效地从输入数据中学习，处理不同大小的输入和输出，并

识别时间域中的模式。最后，通过全局 3D 平均池化强制特征映射与疤痕概率之间的对应关系，

后者通过一个具有 sigmoid 激活函数的全连接神经元层估计。 

3.2.4.2 Conv3Plus1D 层 

为了解决疤痕分布的不均匀性，我们引入了一个时空模块来控制不同尺度空间特征的贡

献。我们的模型将整个心脏的一组短轴影像 sax cine (由 20 个相位组成)输入到一个新的

Conv3Plus1D 层中，在短轴影像中，数据是由具有时间维度的 3D 体(sax 片的堆栈)组成的 4

维数据。Conv3Plus1D 层通过应用三维空间卷积 3×3×3 提取分层空间特征，然后使用一维时

间卷积 11×1×1 提取深层时间特征，从而部署分解的 4D (3D+时间)接受场。 

 

图 3-10  Conv3Plus1D 层网络框图 

如图 3-6 所示。大的时间过滤器允许维持 20 帧之间的长期依赖性。Conv3Plus1D 层的输

入是一个 4D 张量 D∈𝑅𝑋×𝑌×𝑍×𝑇，其中 X 为宽度，Y 为高度，Z 为深度，T 为通道方向上的

时间编码。将空间卷积𝑊𝑠应用于 X×Y×Z 上的输入𝐷si上，其特征映射输出为𝐹si= 𝑊𝑠 ×𝐷si，其

中 i = 1....n 和 n 为 T 方向上的特征映射的个数。训练空间注意模块，为每个特征映射𝐹si分配

注意分数𝑎𝑓𝑘, X × Y × Z 方向的 patch K 为: 

𝑎𝐹𝑠𝑖𝑘 =
𝑒𝑅𝑒 𝐿𝑈(𝐹𝑠𝑖∗𝑊𝑐1)∗𝑊𝑐2

∑ 𝑒
𝑅𝑒𝐿𝑈(𝐹tj∗𝑊𝑐1)∗𝑊𝑐2𝑘

𝑗=1

(3 − 6)   
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其中𝑊c1和𝑊c2是空间注意力模块中全连接的第 1 层和第 2 层的权重。时间卷积𝑊𝑡在一个

输入是𝐷’
𝑡𝑖在 X × Y × T 上的体积上被应用，其中特征映射的输出是𝐹𝑡𝑖= 𝑊𝑡× 𝐷’

𝑡𝑖，其中 i = 

1....m, m 为 Z 方向特征映射的个数。对时空注意力模块进行训练，为 X × Y × T 方向上的每

个特征映射𝐹𝑡𝑖和 patch K 分配一个注意力分数𝑎𝐹′𝑘，如下所示: 

𝑎𝐹′𝑡𝑖𝑘 =
𝑒𝑅𝑒 𝐿𝑈(𝐹′𝑡𝑖∗𝑊𝑐3)∗𝑊𝑐4

∑ 𝑒𝑅𝑒 𝐿𝑈(𝐹′tj∗𝑊𝑐3)∗𝑊𝑐4𝑘
𝑗=1

(3 − 7) 

其中𝑊c3和𝑊c4是时空注意模块中完全连接的第 1 层和第 2 层的权重。 

简化(3-1)和(3-2)方程，排除偏差参数后应用 softmax 激活。分数反映了每个区域在空间

和时间上对确定疤痕存在的重要性。与疤痕检测高度相关的区域得分接近 1，而无疤痕区域

得分接近 0。我们的层能够在空间和时间方向上学习更完整的表示，超越了简单的特征组合

方法。时空核分解可以将模型参数从 46M 减少到 1.4M，同时学习丰富的时空数据表示。 

3.2.4.3 残差注意块 

心脏的运动模式可以随着时间和规模而进化。残差注意块构建了一堆注意模块，这些模

块产生注意感知特征。随着层数的加深，注意力感知特征自适应缩放，从而增强了对空间和

时间细微变化的检测。这种增强对于准确检测小疤痕尺寸至关重要。通过在多个尺度上聚合

来自组织和运动的信息，注意力模块能够学习并根据疤痕的存在为每个区域分配相对重要

性。特征映射的比例为 i，其中 i = 1....4,输入两个全连接层编码 spatial-wise 和 temporal-wise

依赖关系定义为𝐺 = 𝑊𝑅𝑖1 ∗ 𝑅𝑒 𝐿𝑈(𝑉𝑖 ∗ 𝑊𝑅𝑖2), 𝑊𝑅𝑖1、𝑊𝑅𝑖2是第一、二个在 i 尺度上全连接层

的权重比例, 然后通过输出 G 到 softmax 激活函数以获取时空剩余权重,这将被应用到输入映

射 Vi 以在规模 i 上提取时空特性。 

四、功能技术对应关系与排期规划 

4.1  功能与技术对应关系 

功能点 技术应用（对应到具体的技术点，坚持三不：

不泛泛而说，不张冠李戴，不做假） 

进展 

将代码转换到 PaddlePaddle

上 

高效迁移 Pytorch 代码到 PaddlePaddle 

PaConvert 

正常调用 

转换为 Paddle Inference 支

持的模型格式 

模型转换工具 X2Paddle 部署成 paddle 

inference 

正常调用 

心脏图像分割 PaddleSeg U-Net 训练完毕 

辅助诊断智能对话 文心 ERNIE Bot SDK 正在学习 

前端可视化 Vue.js 框架的最新版本 Vue3 制作完毕 

图像处理算法和工具 用于医学图像处理的开源软件包 SimpleITK 正在学习 

后端框架 springboot 正在训练 

后端数据库 基于 MySQL 的 Mabatis 训练完毕 

3D 可视化 3D 图形库 Three.js，可视化工具 Vtk.js 正在学习 

 

 

https://github.com/PaddlePaddle/PaConvert
https://www.paddlepaddle.org.cn/inference/product_introduction/inference_intro.html
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4.2  作品设计开发进度规划  

任务安排 起止时间 负责人 具体任务 

创意书及实验设计 6.22 − 8.14 张郑林 完成创意书撰写 

模型训练与测试 

8.1 − 9.1 张 开发基于 4D 卷积分解的心脏 MRI 心肌

瘢痕检测模型 

8.1 − 9.1 郑 开发基于 3D-Unet 的多模态全心脏影像分

割模型 

8.1 − 9.1 林 开发基于多尺度子网络级联配准的心脏

MRI 单样本分割模型 

算法的迭代优化 9.1 − 9.15 张郑林 测试项目并对速度和效率优化 

产品部署及可视化

制作 

9.15 − 9.20 张郑林 在 AI Studio 完成部署及测试 

项目说明及演示视

频 

9.20 − 10.10 张郑林 撰写项目说明与视频制作 
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