
0G: Towards Fully Decentralized AI Operating System

Zero Gravity Labs

0g@0g.ai

November 28, 2024
DRAFT Version

Abstract

The advent of large language models, coupled with the rapid de-

velopment of parallel computing hardware (GPUs, TPUs, and NPUs),

has significantly accelerated the progress toward AGI. Recent advanced

models, trained on vast amounts of data from across the internet, have

demonstrated significant superiority over humans in many aspects and

real-world scenarios. However, the current centralized and monopolis-

tic model training process has raised many concerns regarding the secu-

rity, privacy, and fairness of applying these powerful models. Therefore,

there recently appears a strong demand for transparency and democra-

tization in the production and deployment process of AI products. De-

centralization powered by blockchain technologies has been recognized

as a promising path to achieve this. Unfortunately, the infrastruc-

tures in current blockchain industry still face tremendous scalability

challenges in achieving the internet-level scale required for real-world

AI systems and application scenarios. 0G makes a first step towards

the ultimate solution by providing a decentralized AI operating sys-

tem through a modular and layered architecture design. It consists

of a storage network, a data availability network, and a data serving

network, managing the computing and storage resources in all these

networks in a permissionless way, and orchestrating them organically

with the separate 0G consensus network. All of these network com-

ponents utilize carefully designed and innovative sharding mechanisms

to achieve infinite horizontal scalability, thereby removing obstacles to

the true democratization of AI.

1

mailto:0g@0g.ai

Contents

1 Introduction 3

2 Overview of the System Design 6

3 Design of the 0G Storage 8

4 Log System Protocol 9

4.1 Protocol Overview . 10

4.2 Storage Granularity . 11

4.3 Data Flow . 11

5 Incentive Mechanism 12

5.1 Storage Request Pricing . 12

5.2 Proof of Random Access . 13

5.2.1 Fairness for Small Miners 14

5.2.2 Disincentivize Storage Outsourcing 14

5.2.3 Disincentivize Distributed Mining 14

5.2.4 Formal Definition for PoRA Mechanism 16

5.3 How to Balance the Number of Replicas? 17

6 Key-Value Runtime 17

7 Transactional Processing on Key-Value Store 18

8 Service Marketplace over 0G Compute Network 20

9 Roadmap 22

1 Introduction

Artificial Intelligence (AI) has rapidly evolved into a powerful tool that is

transforming industries and reshaping our everyday lives. However, the

journey of AI development and deployment is often confined within central-

ized platforms, leading to significant concerns around privacy, fairness, and

alignment. As we continue to witness the proliferation of AI, a critical trend

is emerging: the democratization of AI through decentralization.

Centralized AI platforms, while convenient and powerful, introduce sev-

eral critical issues. When a handful of entities control the AI infrastructure,

they also control the data and the algorithms. This centralization creates

a scenario where users’ privacy can be compromised, either through data

breaches or through misuse of personal information. Moreover, the decision-

making processes of AI systems can become opaque, making it difficult to

ensure fairness and accountability. Alignment, or ensuring that AI systems

act in accordance with human values and intentions, becomes particularly

challenging in centralized environments. If AI development is monopolized

by a few organizations, the risk of misalignment with the broader popula-

tion’s values increases, potentially leading to outcomes that are beneficial

to some but detrimental to others.

Decentralization offers a promising alternative. By moving AI workflows

into a decentralized environment, the entire process becomes more transpar-

ent. Every step of the AI lifecycle—from data collection and processing to

model training and deployment—can be tracked, audited, and verified. This

transparency helps in addressing concerns about provenance (where the data

comes from) and attribution (who owns or has contributed to the data and

models). Furthermore, a decentralized approach makes it easier to ensure

that AI systems are aligned with a broader and more diverse set of values,

as it is less likely to be controlled by a single entity with a narrow agenda.

However, while the benefits of decentralizing AI are clear, the challenges

are equally daunting. The AI workflow is inherently complex, involving mas-

sive amounts of data processing and neural network computing. Replicating

this workflow in a decentralized environment is non-trivial. It requires well-

designed abstraction and super scalable infrastructure that can handle the

demands of AI workloads while maintaining the benefits of decentralization.

0G makes a first step towards the ultimate solution by providing a de-

3

centralized AI operating system through a modular and layered architecture

design. It consists of a storage network, a data availability (DA) network,

and a data serving network, managing the computing and storage resources

in all these networks in a permissionless way, and orchestrating them or-

ganically with the separate 0G consensus network. All of these network

components utilize carefully designed and innovative sharding mechanisms

to achieve infinite horizontal scalability, thereby removing obstacles to the

true democratization of AI.

The 0G storage network consists of a bunch of storage nodes connected

through a peer-to-peer gossip network. Each data block written into the

storage network accompanies a transaction on the consensus network to

record the commitment and the ordering of the data. To scale the data

throughput infinitely, the storage network is organized in a partitioned way

and connects to an arbitrary number of consensus networks that run in

parallel and independently. The data requests from different independent

applications may be written into different storage partitions and their data

commitments can be recorded into different consensus networks simultane-

ously. All the consensus networks share the same set of validators with the

same staking status so that they keep the same level of security. Each stor-

age node actively participates in a mining process by submitting proof of

accessibility for a specific piece of data to a smart contract deployed on a

consensus network. Once the proof is validated by the smart contract, the

storage node gets rewarded accordingly. This incentive-based mechanism

rewards the nodes for contributions rather than punishing them for misbe-

haviors, so it can better encourage nodes to participate in the maintenance

of the network, and hence can promote the network to achieve better scal-

ability in practice. 0G storage is also designed as a general storage system

with multiple stacks of abstractions and structures including an append-only

log layer for archiving unstructured data and a key-value layer for manag-

ing mutable and structured data. This allows 0G to support reliable data

indexing and a greater variety of data types for AI processing.

The 0G DA network comes from the demand for off-chain verification

of executed states in Layer2s or decentralized AI networks with optimistic

mechanism. Specifically, the off-chain verifier, usually the light client, needs

to be able to access the entire transaction history data to verify the execution

of the transactions. In Layer2 scenarios, the blocks containing executed

4

transactions in Layer 2 networks need to be published and stored somewhere

for light client to conduct further verification. Similar requirements also

exist in decentralized AI infrastructures where the results of training or

inference tasks on devices in the networks need to be further verified due to

the demands of users or system incentives. For example, in ORA/OpML [3]

scenarios, it requires participants to provide fraud proofs for specific AI

tasks during a challenge window and the proofs may need to contain the

data and models used in those tasks. Some incentive mechanisms may also

require randomly choosing and verifying old historical tasks to give rewards

accordingly, and hence to achieve a good trade-off between verification cost

and effectiveness.

In contrast to other alternative DA solutions, e.g., Celestia [5] and

EigenDA [6], 0G DA targets to the ultimate scalability and security. It

embraces the idea of separating the workflow of data availability into both

the Data Publishing Lane and the Data Storage Lane. The large volume of

data transfers happen on the Data Storage Lane that is supported by the DA

nodes with horizontal scalability through erasure-coding based data slicing,

while the Data Publishing Lane guarantees the data availability property

by checking the aggregated signatures of the corresponding DA nodes on

the consensus network, which only requires tiny data flowing through the

consensus protocol to avoid the broadcasting bottleneck.

The DA nodes in the network also need to be stakers on 0G consensus

and form a series of quorums with majority honesty assumption. This is

the security foundation of the data availability. The quorums of 0G are

constructed randomly by the consensus system through verifiable random

function (VRF) which theoretically guarantees the same distribution of the

honest participants as in the validator set of the entire consensus network, so

that the data availability client cannot collude with them. In other words, as

subsets of all the validators, the quorums share the same security property

as the entire consensus network. The aggregated signatures of the quorum

will be submitted to the consensus of 0G for data availability confirmation,

which can be orders of magnitude faster and more efficient than Ethereum.

Combined with the multi-consensus design of 0G with infinite scalability, the

consensus protocol will not become the bottleneck of the data throughput.

In addition, as with EigenDA, the data availability client needs to conduct

erasure coding for the data to have it split into chunks. In practice, this

5

process is very costly and can be the major bottleneck for the throughput

of a single client. 0G provides a GPU-accelerated solution for the erasure

coding process to significantly speed it up.

Further, in order to support efficient and scalable AI computation and

data access, 0G proposes a decentralized serving network. It is a general

framework that can support all kinds of serving workloads including data re-

trieval, AI inference, and even AI training tasks. It consists of a set of smart

contracts and distributed software to allow any type of services to integrate

into the decentralized network. Attached with 0G serving framework SDK,

a service provider can register and publish the service type, pricing, and

verification method into the smart contract. A user can discover a service

that she is willing to use through our platform and pre-pay certain amount

of 0G tokens to the smart contract. She then can directly interact with

the service, sending request, receiving and verifying the response, and ac-

knowledging the response with signature. The service provider maintains

the request/response sequence with user acknowledgment and send it to the

smart contract for settlement at any time to get the corresponding reward

from the user paid fees. Through this way, the service workload can be

perfectly partitioned for horizontal scalability and the blockchain overhead

is minimized. Since all the service process traces are sent to the smart

contract for settlement, these information can also be used to evaluate the

contribution and quality of the services in the entire network, which enables

the appropriate and fair incentives for better service providers.

2 Overview of the System Design

0G system consists of a data availability layer (0G DA) on top of a decen-

tralized storage system (0G Storage). There are one or multiple separate

consensus networks that are part of both the 0G DA and the 0G Storage.

For 0G Storage, each consensus network is responsible for determining the

ordering of the uploaded data blocks, realizing the storage mining verifica-

tion and the corresponding incentive mechanism through smart contract.

For 0G DA, the consensus is in charge of guaranteeing the data availability

property of each data block via verifying the aggregated signatures from the

corresponding data availability quorum.

Figure 1 illustrates the architecture of the 0G system when deploying a

6

single consensus network. When a data block enters the 0G DA, it is first

erasure coded and organized into multiple consecutive chunks through era-

sure coding. The merkle root as a commitment of the encoded data block

is then submitted to the consensus layer to keep the order of the data en-

tering the system. The chunks are then dispersed to different storage nodes

in a quorum in 0G Storage. The storage nodes periodically participate the

mining process by interacting with the consensus network to accrue rewards

from the system. The DA client then collects the aggregated signatures from

the quorum and submits the signatures to the consensus for verification.

0G Consensus

Smart
Contract

0G Storage
Network

Storage
node

Validator
node

Disperse
server

DataBlob

Chunk1

Chunk2

DataBlob

Chunk2Chunk1

Erasure
coding data
to chunks

Data root&
commitment

Disperse chunks
to storage nodes

1

2

3

4 Aggregated
signatures of quorum

DA quorum

Figure 1: The architecture of the 0G system.

When deployed with multiple POS-based consensus networks, each val-

idator participates in the maintenance of all the consensus networks by us-

ing a shared staking status. The shared staking status can be recorded in

a smart contract on one of the multiple consensus networks or a blockchain

network outside of the 0G consensus network set, e.g. Ethereum. Assuming

C0 is the consensus network that maintains the shared staking status, the

token T0 on C0 would be staked for POS voting. When token Ti is produced

on network Ci (i ̸= 0) via incentives, it can be mapped to T0 on C0 by burn-

ing Ti on Ci through a secure cross-chain bridge channel. When a validator

maintains the POS protocol in any network Ci, it always uses the amount

of staked T0 on C0 as its voting power in Ci. Therefore, all the network

7

Ci share the same level of POS security. By using Ethereum as network

C0, it brings the benefit of incarnating the token T0 as a standard ERC20

token and also enables the easy integration with existing popular restaking

framework like EigenLayer [7]. Note that, the sources of the shared staking

status may also come from the high value tokens (e.g., BTC and ETH) in

restaking frameworks like EigenLayer and Babylon [8], so that to make 0G

consensus reach the Bitcoin or Ethereum level of security. As illustrated in

Figure 2, this shared staking design introduces the unlimited scalability to

0G system.

0G Storage Network

0G Chain0

0G Chain1

0G Chain2

$0G0

$0G1

$0G2

$0GERC20

V0 (0x5124...1c34)

V’0 (0x5124...1c34)

V’’0 (0x5124...1c34)

burn

mint
stake

fetch
stake

Figure 2: The infinite scalability of the 0G system.

3 Design of the 0G Storage

0G Storage employs layered design targeting to support different types of

decentralized applications. Figure 3 shows the overview of the full stack

layers of 0G Storage.

The lowest is a log layer that is a decentralized system consisting of

multiple storage nodes that form a storage network with a built-in incentive

mechanism that rewards data storage. The ordering of the uploaded data

is guaranteed by a sequencing mechanism that provides log-based seman-

tics and abstraction. This layer is used to store unstructured raw data for

8

permanent persistency.

Log System

Key-Value Store

Transaction Processing
ACID for applications with concurrent update,

e.g., Google doc with collaborative editing

Enables the mutability of the data with access
control and allows applications like

decentralized social network

Archive system which provides permanent
persistency and append-only property

Figure 3: Full stack solution of 0G Storage.

On top of the log layer, 0G Storage provides a Key-Value store runtime

to manage structured data with mutability. Multiple key-value store nodes

share the underlying log system, putting the structured key-value data into

the log entry and appending it to the log system. They play the log entries

in the shared log to construct the consistent state snapshot of the key-

value store. The throughput and latency of the key-value store are bounded

by the log system, so that the efficiency of the log layer is critical to the

performance of the entire system. The key-value store can associate access

control information with the keys to manage the update permission for the

data. This enables the applications like social network, e.g., decentralized

Twitter, which requires the maintenance for the ownership of the messages

created by the users.

0G Storage further provides transactional semantics on the key-value

store runtime to enable concurrent updates for the keys from multiple users

who have the write access permission. The total order of the log entries

guaranteed by the underlying log system provides the foundation for the

concurrency control of the transactional executions on top of the key-value

store. With this capability, 0G Storage can support decentralized applica-

tions like collaborative editing and even database workloads.

4 Log System Protocol

The log layer of 0G Storage provides decentralized storage service via a

permissionless network of storage nodes. These storage nodes collaboratively

9

serve archived data, where each node optionally specifies which portion of

data it keeps in local storage.

…
Host Blockchain

create new data entry

read mining status claim reward

Raw data Storage request

Users
hash commitment

Storage

Storage nodes

Mining proof

Status

Mining
random query Queried

chunks

Figure 4: Overview of 0G Storage protocol. Data creation and reward distribution

are fully decoupled: users directly submit storage requests to the 0G Storage contract

deployed on host blockchain; storage nodes claim rewards by proving to the contract that

they have the ability to answer random queries to archived data. 0G tokens are handled

in another isolated contract, which enables non-blocking token transfer.

4.1 Protocol Overview

The storage state of 0G Storage network is maintained in a smart contract

deployed on 0G blockchain. This contract is called the 0G Storage contract

and the underlying blockchain is called the host blockchain or host chain for

short.

The design of 0G Storage network fully decouples data creation, reward

distribution, and token circulation.

The 0G Storage contract is responsible for data storage request process-

ing, data entry creation, and reward distribution. Data storage requests

are submitted by users who wish to store data in the 0G Storage network,

where each request includes necessary metadata such as data size and com-

10

mitments, and it comes along with the payment for storage service. Data

entries are created for accepted data requests, keeping record of stored data

while reward distribution is handled independently through a mining pro-

cess. storage nodes submit mining proofs to the 0G Storage contract to

claim rewards for maintaining the 0G Storage network.

4.2 Storage Granularity

The log layer of 0G Storage is updated (append-only) at the granularity

of log entries, where every entry is created by a storage-request transaction

sent to the 0G Storage contract. The log layer is akin to a filesystem, with

every log entry corresponding to a file.

The log system operates at the level of fixed-size sectors, with each sector

storing 256 B of data. To avoid one sector being shared by distinct log

entries, every log entry must be padded to multiple sectors.

The mining process of 0G Storage requires proving data accessibility to

random challenge queries. To maximize the competitive edge of SSD storage,

the challenge queries are set to the level of 256 KB chunks, i.e. 1024 sectors.

As every challenge query requires the miner to prove accessibility to a whole

chunk of data, storage nodes would maintain data at the granularity of

chunks.

4.3 Data Flow

In 0G Storage, committed data are organized sequentially. Such a sequence

of data is called a data flow, which can be interpreted as a list of data entries

or equivalently a sequence of fixed-size data sectors. Thus, every piece of

data in 0G can be indexed conveniently with a universal offset. This offset

will be used to sample challenges in the mining process of PoRA.

The default data flow is called the “main flow” of 0G, and it incorporates

all new log entries (unless otherwise specified) in an append-only manner.

There are also specialized flows that only accept some category of log

entries, e.g. data related to a specific application. The most significant

advantage of specialized flows is a consecutive addressing space, which may

be crucial in some use cases. Furthermore, a specialized flow can apply

customized storage price, which is typically significantly higher than the

11

floor price of the default flow, and hence achieves better data availability

and reliability.

5 Incentive Mechanism

This section describes the incentive mechanism design of the 0G Storage,

which consists of two types of actors: users and miners (a.k.a. ”storage

nodes”). Users pay 0G tokens to create data entries in the log and add

data to the network, while miners provide data services and receive 0G

tokens as a reward from the network. The payment from users to miners is

mediated by the 0G consensus network, as the service is sustained by the

whole network rather than any specific miner.

0G Storage implements storage service in a “pay once for a fixed period

of time” manner. Users pay a storage endowment for each created data

entry for a certain period of time, e.g., 3 years, and thereafter the endow-

ment is used to incentivize miners who maintain that data entry by linear

distribution. Users can recharge to extend the storage period.

The storage endowment is maintained per data entry, and a miner is only

eligible for storage rewards from data entries that he has access to. The total

storage reward paid for a data entry is independent of the popularity of that

data entry. For instance, a popular data entry stored by many miners will

be frequently mined, but the reward is amortized amongst those miners. On

the other hand, a less popular data entry that is rarely mined would have

its storage reward accumulate and hence provide a higher payoff to miners

who store this rare data entry.

5.1 Storage Request Pricing

The cost of each 0G Storage request is composed of two parts: a) fee and

b) storage endowment. The fee part is paid to host chain miners/validators

for invoking the 0G contract to process storage requests and add new data

entries into the log, which is priced like any other smart contract invoca-

tion transaction. In what follows we focus on the storage endowment part,

which supports the perpetual reward to 0G Storage miners who serve the

corresponding data.

Given a data storage request SR with specific amount of endowment

12

SRendowment and size of committed data SRdata size (measured in number of

256 B sectors), the unit price of SR is calculated as follows:

SRunit price = SRendowment/SRdata size (1)

This unit price SRunit price must exceed a globally specified lower bound

to be added to the log, otherwise the request will be pending until when the

lower bound decreases below SRunit price (in the meantime miners will most

likely not store this unpaid data). Users are free to set a higher unit price

SRunit price, which would motivate more storage nodes mining on that data

entry and hence lead to better data availability.

5.2 Proof of Random Access

The 0G network adopts a Proof of Random Access (PoRA) mechanism to

incentivize miners to store data. By requiring miners to answer randomly

produced queries to archived data chunks, the PoRA mechanism establishes

the relation between mining proof generation power and data storage. Min-

ers answer the queries repeatly and computes an output digest for each

loaded chunk util find a digest satisfies the mining difficulty (i.e., has enough

leading zeros). PoRA will stress the miners’ disk I/O and reduce their capa-

bility in responding user queries. So 0G Storage adopts intermittent mining,

in which a mining epoch starts with a block generation at a specific block

height on the host chain and stops when a valid PoRA is submitted to the

0G Storage contract.

In a strawman design, a PoRA iteration consists of a computing stage

and a loading stage. In the computing stage, a miner computes a random

recall position (the universal offset in the flow) based on an arbitrary picked

random nonce and a mining status read from the host chain. In the loading

stage, a miner loads the archived data chunks at the given recall position,

and computes output digest by hashing the tuple of mining status and the

data chunks. If the output digest satisfies the target difficulty, the miner

can construct a legitimate PoRA consists of the chosen random nonce, the

loaded data chunk and the proof for the correctness of data chunk to the

mining contract.

In the following, we introduce some major considerations in improving

the fairness in PoRA mining and formalize the PoRA mining mechanism.

13

5.2.1 Fairness for Small Miners

When the storage size of the 0G Storage network significantly exceeds the

storage capacity of a single machine, a single machine will take almost all the

time in finding an available recall position. This makes the PoRA becomes

proof of work. To make the PoRA mining process be friendly to small

miners with a single machine, the mining range is limited to a threshold

8 TB. When the size of archived data chunks exceeds 8 TB, a miner must

specify a mining range over the data flow sequence in size of 8 TB. For large

miners have enough machines to store all the data, it can mine on different

data ranges concurrently.

5.2.2 Disincentivize Storage Outsourcing

To promote the whole network storing enough replicas of data chunks, 0G

Storage limits the reward share of a single miner with a single storage replica.

PoRA mechanism seals the data for each miner in different ways, challenges

the accessing of sealed data, and prevents mining with data chunks from

others. If a miner outsources the data storage and queries the archived data

chunks in PoRA mining, it must seal the answering data to compute the

output digest, which is a large cost. A miner can seal and unseal tens of

MB data chunks by a single thread, so it can still serving the user queries

efficiently. As reading data from SSDs can reach up to 7 GB/s, the data

sealing is a heavy task for PoRA mining. As long as the cost imposed by

data sealing exceeds the cost of purchasing disks and synchronizing data,

the miners intend to store a replica of data chunks instead of sealing data

on PoRA mining.

More specifically, every 4KB data chunk will be sealed by the miner ID

and other context data. Suppose seal seed is a 32-byte digest of the miner

ID and the context data, figure 5 defines the seal process.

5.2.3 Disincentivize Distributed Mining

As a mining mechanism for incentivizing data storage, a single storage

replica should produce a similar hashrate for fairness. In PoRA mining

process, the hashrate is bottlenecked by the storage Input/Output (I/O).

So we expected all the miners to have similar storage I/O per unit of stor-

age. However, a mining farm can significantly increase its I/O compared

14

Input : seal seed, unsealed data

Output: sealed data

1 Regard unsealed data in length of 4 KB as an array of 32-byte elements d⃗

2 h← seal seed

3 for i from 0 to 127 do

4 d⃗[i]← d⃗[i] XOR h

5 h← Keccak256(d⃗[i])

6 Regard d⃗ as a 4-KB data chunk sealed data

Figure 5: Seal 4 KB data chunks

to normal miners by storing data chunks in a distributed system with in-

memory filesystem. As the DDR memory has a significantly larger band-

width compared to SSD, the mining farm can produce much more hashrate

while contributing negligible to the data storage.

0G Storage prevents this behavior by imposing a large amount of data

transfer from the computing stage to the loading stage to encourage miners

to complete two stages on the same machine. So if the computing stage and

loading stage are separated by different machines, the hashrate is bounded

by the network bandwidth, which is usually smaller than the storage I/O

bandwidth. In the computing stage, a random scratchpad will be generated

coupled with the recall position. It has the same length as the data chunk

to be loaded. Before computing the hash of the loaded data chunk, the data

chunk should be mixed with the scratchpad by an XOR operation.

However, there is a dilemma between the read bandwidth and the trans-

action fee for submitting PoRA to the host chain. Since loading data chunks

from local disks should be more efficient than downloading them via the net-

work, the loading stage should leverage the fast SSD read speeds in sequen-

tial access to maximize the data chunk loading bandwidth. According to our

benchmarks, randomly loading 256-KB data chunks reaches 80% read speed

of sequential access. However, when submitting the data chunk to the host

chain, a 256-KB transaction is too large and will consume a large amount

of transaction fee. Reducing the size of the data chunk could mitigate this

issue, but would impair the read speed.

PoRA mechanism adopts “batched data loading” to resolve this

dilemma. In each iteration, a miner loads a 256-KB data chunk from

storage, divides it into 4-KB data chunks, and computes the hash for each

15

4-KB data chunk individually. If one of the 64 outputs matches the target

quality, the miner finds a valid answer. So only the 4-KB data chunk

contributing to this answer is required to be submitted to the host chain.

5.2.4 Formal Definition for PoRA Mechanism

Precisely, the mining process has the following steps:

1. Register the miner id on the mining contract;

2. For each mining epoch, repeat the following steps:

(a) Wait for the layer-1 blockchain to release a block at a given epoch

height;

(b) Get the block hash block hash of this block and the relevant

context (including merkle root, data length, context digest) at this

time;

(c) Compute the number of minable entries n = ⌊data length/256KB⌋.

(d) For each iteration, repeat the following steps:

i. Pick a random 32-byte nonce;

ii. Decide the mining range parameters start position and

mine length; mine length should be equal to min(8TB, n ·
256KB);

iii. Compute the recall position τ and the scratchpad s⃗ by the

algorithm in figure 6;

iv. Load the 256-kilobyte sealed data chunk d⃗ started from the

position of h · 256KB;

v. Compute w⃗ = d⃗ XOR s⃗ and divide w⃗ into 64 4-kilobyte pieces;

vi. For each piece v⃗, compute the Blake2b hash of the tuple

(miner id, nonce, context digest, start position, mine length,

v⃗);

vii. If one of the Blake2b hash outputs is smaller than a target

value, the miner found a legitimate PoRA solution.

16

Input : miner id, nonce, context digest, start position, mine length

Output: Recall position τ and the scratchpad s⃗

1 h← Blake2b(miner id, nonce, context digest, start position,mine length)

2 Initialize an empty array s⃗ with 4096 64-byte elements

3 for i ∈ {x ∈ Z | 0 ≤ x < 4095} do
4 h← Blake2b(h)

5 s⃗[i]← h

6 r ← Keccak256(h)

7 n← mine length/256KB

8 τ ← start position+ r mod n

Figure 6: Computing the recall position and the scratchpad

5.3 How to Balance the Number of Replicas?

Every miner in 0G Storage is required to explicitly claim the range of data

entries that he maintains, and then he may only use the claimed data in

his mining process. That is, a miner cannot receive mining rewards from

unclaimed data, and on the other hand, the mining output is decreased if

he fails to answer a challenge within his claimed range. As a result, a miner

has no incentive to lie about the range of data used for mining.

Since miners truthfully expose the list of data entries that they maintain,

it is easy to observe and estimate the number of replicas for every specific

piece of data. Furthermore, recalling that the storage endowment is paid to

miners who maintain corresponding pieces of data, miners are incentivized

to store rare data and hence balance the number of replicas.

6 Key-Value Runtime

0G Storage provides a Key-Value runtime upon the log layer. Each key-value

node can access the key-value store state through the runtime interface. The

key-value runtime provides the standard interface like Put() and Get(), and

accepts serialized key-value pair from any application-specific structure.

During the normal execution of the key-value store node, it maintains the

latest key-value state locally. It updates the value of a key through Put()

API which composes a log entry containing the updated key-value pair and

appends it to the log. The runtime constantly monitors the new log entries in

the log and fetches them back to the key-value node, updating the local key-

17

value state according to the log entry contents. In this sense, multiple key-

value store nodes essentially synchronize with each other through the shared

decentralized log. A user-defined function will be used to deserialize the

raw content in the log entry to the application-specific key-value structure.

Applications can use Get() API to access the latest value of any given

key. To improve the efficiency of the updates for small key-value pairs,

the Put() allows batched updates with multiple key-value pairs at once.

Figure 7 illustrates the architecture of the decentralized key-value store. To

manage the access control, the ownership information of each key can also be

maintained in the log entries. All the honest key-value nodes follow the same

update rule for the keys based on the ownership to achieve state consistency.

KA

Ionian KV
Runtime

Put(KA, VA) Get(KB)

App Server 0 App Server 1

A B A’ C B’ A’’

Storage Network

KB KC

Ionian Log
Runtime IA IB IC

KA

Ionian KV
Runtime KB KC

Ionian Log
Runtime IA IB IC

Blockchain

Data in the log are
structured as key-
based objects

Indices are constructed
by playing Ionian log
and can be consistent
across app severs.

Log Layer

Figure 7: Decentralized Key-Value Store

When a new key-value node just joins the network, it connects to the log

layer and plays the log entries from head to tail to construct the latest state

of the key-value store. During the log entry playing, an application-specific

key-value node can skip irrelevant log entries that do not contain the stream

IDs that it cares.

7 Transactional Processing on Key-Value Store

0G Storage employs concurrency control in the key-value runtime to support

transactional processing for concurrent operations on multiple keys. The to-

tal order of the log entries guaranteed by the underlying log system provides

18

the foundation for this concurrency control of the transactional executions

on top of the key-value store. This mechanism is optimistic and illustrated

in Figure 8.

When an application server linking with the 0G Storage key-value run-

time starts a transaction using BeginTx() interface, it notifies the runtime

that the transaction will work on the current state snapshot constructed by

playing the log to the current tail. The further key-value operations before

the invocation of EndTx() update the key-values locally in the server with-

out exposing the updates to the log. When EndTx() is invoked, the runtime

composes a commit record containing the log position the transaction starts

from and the read-write set of the transaction. This commit record is then

appended to the log.

Blockchain
1 2 3 4 5

App Server

TX start pos = #1

T->BeginTx();
buffer = T->Get(fileKey);
// update buffer;
T->Put(fileKey, buffer)
status = T->EndTx();

updates by
other clients

Commit record:
reads: fileKey
writes: fileKey

TX commits if read set has not
changed in conflict window

conflict window

Transaction Model:
1. Assume the transaction

participants are collaborative
and will honestly add read/write
set in commit record. Or:

2. Use ZKP or secure computation
hardware for verifiable
transaction computation.

Figure 8: Transactional Processing on 0G Storage KV Store

When an application server with the key-value runtime encounters the

commit record while playing the log, it identifies a conflict window consisting

of all the log entries between the start log position of the transaction and

the position of the commit record. The log entries in the conflict window

therefore contain the key-value operations concurrent with the transaction

submitting the commit record. The runtime further detects whether these

concurrent operations contain the updates on the keys that belong to the

read set of the transaction. If yes, the transaction is aborted. Otherwise, it

is committed successfully.

19

This transaction model assumes that the transaction participants are

collaborative and will honestly compose the commit record with the correct

content. Although this assumption in a decentralized environment is too

strong, it is still achievable for specific applications. For example, for an

application like Google Docs, a user normally shares access with others who

are trusted. In case this assumption cannot hold, the code of the transaction

can be stored in 0G log and some mechanism of verifiable computation like

zero-knowledge proof or hardware with trust execution environment (TEE)

can be employed by the transaction executors to detect the validity of the

commit record.

8 Service Marketplace over 0G Compute Network

As a decentralized AI operating system, 0G also provides a separate plat-

form managing the decentralized computing resources as services. It orga-

nizes the computation resources in a compute network and allows services

deployed and registered with verifiability so that users can choose trusted

services in the decentralized environment.

0G compute network is designed as a free marketplace where users and

service providers decide the prices of the services through a peer-to-peer

fashion. The service provider is free to quote their services, and then users

are free to choose the services that are priced appropriately for them to

use. The system assumes that any service result can be verified by the user

who submits the request. In the trust model, it treats the service providers

as more trustworthy than users and less powerful to apply sybil attack.

Therefore, a user may face the risk of losing the cost of a single request. In

other words, when a user submits a request and sends fee to smart contract,

she may spend the fee but fail to get the service result if the service provider

is malicious. In this case, the user can choose other service providers in the

network to retry the request.

The service provider should first register into the smart contract with

information about the service types that it provides, the price of each type,

and the specific verification mechanism. When a user wants to access the

service, she pre-charges some amount of fee to the smart contract for this

service provider. The user then can issue requests to the service provider

and the service provider decides to respond with the serving results based

20

on whether the remaining fee is enough. Any request and response have

the signatures of the user and the service provider, respectively. The user

can verify each response and decide to stop sending further request if the

verification is failed. The service provider can decide at any point to send

the request traces with user’s signature to the smart contract for settlement.

Once settlement is done, the corresponding portion of the pre-charged fee

can be sent to service provider’s account.

The performance trade-off is how often the service provider submits the

settlement request to the smart contract. For the high-latency services, the

provider can submit settlement per user request. But for the low-latency ser-

vices, the provider may need to batch more user requests for one settlement.

Another consideration is how the user request trace should be organized

as the smart contract input for settlement. Plainly submitting all the re-

quests in the trace may involve too much on-chain gas consumption. 0G

therefore employs zero-knowledge proof mechanism to optimize the on-chain

settlement cost.

0G Storage Network

OpML
Providers

TEE
Providers

4. Verification

0G Consensus

smart
contract

1. Load
models and data

needed for serving

1. Discover
services and

pre-pay

2. Register services

3. ZK proof of
services for
settlement

2. Request,
response and

verify

User side

Provider side

zkML
Providers

Permissionless
Service Network

Training Orchestrator
& Verification

Root of Trust

3. Remote attestation

Inference Routing &
Verification

Figure 9: The Architecture of 0G Compute Network and Service Marketplace.

0G compute network provides a bunch of useful SDK and APIs for the

service providers to easily register their services into the marketplace smart

21

contract, and allows users to conveniently discover appropriate services and

interact with them smoothly. The services may include AI model inference

and training workers, and also the data caching and fetching services.

Together with the 0G storage and DA networks, the 0G compute net-

work and the service marketplace complete the infrastructure foundation of

the dAIOS to enable easy migration of AI applications and platforms from

Web2 to Web3, and pave the way towards AGI democratization.

9 Roadmap

TBA.

References

[1] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud and

data availability proofs: Maximising light client security and scaling

blockchains with dishonest majorities, 2019.

[2] Ethereum White Paper. https://ethereum.org/en/whitepaper/,

2020.

[3] ORA-OpML. https://docs.ora.io/doc.

[4] Optimism. https://www.optimism.io/.

[5] Celestia. https://celestia.org/.

[6] EigenDA. https://www.blog.eigenlayer.xyz/tag/eigenda/.

[7] EigenLayer. https://www.eigenlayer.xyz/.

[8] BabylonChain. https://babylonchain.io/.

22

https://ethereum.org/en/whitepaper/
https://docs.ora.io/doc
https://www.optimism.io/
https://celestia.org/
https://www.blog.eigenlayer.xyz/tag/eigenda/
https://www.eigenlayer.xyz/
https://babylonchain.io/

	Introduction
	Overview of the System Design
	Design of the 0G Storage
	Log System Protocol
	Protocol Overview
	Storage Granularity
	Data Flow

	Incentive Mechanism
	Storage Request Pricing
	Proof of Random Access
	Fairness for Small Miners
	Disincentivize Storage Outsourcing
	Disincentivize Distributed Mining
	Formal Definition for PoRA Mechanism

	How to Balance the Number of Replicas?

	Key-Value Runtime
	Transactional Processing on Key-Value Store
	Service Marketplace over 0G Compute Network
	Roadmap

