APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo

Dept. of Bio-industrial Mechatronics Engineering
National Taiwan University
Today:

- Linear equation
- Linear system

Linear Equation

- Suppose you are given linear equations:

$$
\left\{\begin{array}{l}
3 x-2 y=5 \\
x+4 y=11
\end{array}\right.
$$

- Matrix notation:

$$
\underbrace{\left[\begin{array}{cc}
3 & -2 \\
1 & 4
\end{array}\right]}_{\boldsymbol{A}} \underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{\boldsymbol{x}}=\underbrace{\left[\begin{array}{c}
5 \\
11
\end{array}\right]}_{\boldsymbol{b}}
$$

Why Matrix Form?

- An electrical network:

$$
\begin{aligned}
& \cdot V_{1}=R_{1} i_{1}+R_{4} i_{4} \\
& \cdot R_{4} i_{4}=R_{2} i_{2}+R_{5} i_{5} \\
& \cdot R_{5} i_{5}=R_{3} i_{3}+V_{2} \\
& \cdot i_{1}=i_{2}+i_{4} \\
& \cdot i_{2}=i_{3}+i_{5}
\end{aligned}
$$

- Given the voltages V_{1} and V_{2} and the resistances $R_{1} \ldots R_{5}$
- Solve the currents $i_{1} \ldots i_{5}$

Formulation for the Electrical Network

$$
\underbrace{\left[\begin{array}{ccccc}
R_{1} & 0 & 0 & R_{4} & 0 \\
0 & R_{2} & 0 & -R_{4} & R_{5} \\
0 & 0 & -R_{3} & 0 & R_{5} \\
1 & -1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 & -1
\end{array}\right]}_{\boldsymbol{A}} \underbrace{\left[\begin{array}{l}
i_{1} \\
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5}
\end{array}\right]}_{\boldsymbol{x}}=\underbrace{\left[\begin{array}{c}
V_{1} \\
0 \\
V_{2} \\
0 \\
0
\end{array}\right]}_{\boldsymbol{b}}
$$

- Usually when solving linear equations:

1. \boldsymbol{A} and \boldsymbol{b} are know
2. x is unknown

Solving Linear Equations

1. Successive elimination (through factorization)
2. Cramer's method

Gaussian Elimination

- Suppose given:

$$
\begin{aligned}
\left\{\begin{aligned}
x+2 y+z=2 \\
2 x+6 y+z=7 \\
x+y+4 z=3
\end{aligned}\right. & \Rightarrow\left[\begin{array}{lll|l}
1 & 2 & 1 & 2 \\
2 & 6 & 1 & 7 \\
1 & 1 & 4 & 3
\end{array}\right] \\
\Rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
2 & -1 & 3 \\
-1 & 3 & 1
\end{array}\right] & \Rightarrow\left[\begin{array}{lll|l}
1 & 2 & 1 & 2 \\
& 2 & -1 & 3 \\
& & 5 / 2 & 5 / 2
\end{array}\right]
\end{aligned}
$$

Gaussian Elimination - rref ()

$$
\left\{\begin{array}{r}
x+2 y+z=2 \\
2 x+6 y+z=7 \\
x+y+4 z=3
\end{array} \Rightarrow\left[\begin{array}{lll|l}
1 & 2 & 1 & 2 \\
2 & 6 & 1 & 7 \\
1 & 1 & 4 & 3
\end{array}\right]\right.
$$

$$
\left.\begin{array}{l}
A=\left[\begin{array}{lllll}
1 & 2 & 1 ; 2 & 6 & 1 ; 1
\end{array}\right] \\
b=[2 ; 7 ; 3
\end{array}\right] ;
$$

LU Factorization

- Suppose we want to solve: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A} \in \mathfrak{R}^{m \times m}$
- Decompose \boldsymbol{A} into 2 triangular matrices: $\boldsymbol{A}=\boldsymbol{L}^{-1} \boldsymbol{U}$
- The problem become: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad \Rightarrow \quad \boldsymbol{L}^{-1} \underbrace{\boldsymbol{U} \boldsymbol{x}}_{\boldsymbol{y}}=\boldsymbol{b}$
- Strategies:

1. Solve $\boldsymbol{L}^{-1} \boldsymbol{y}=\boldsymbol{b}$ to obtain \boldsymbol{y}
2. Then solve $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}$

Lower and Upper Triangular Matrices

- Lower triangular matrix $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ \vdots & \ddots & 0 \\ \vdots & \cdots & 1\end{array}\right] \in \mathfrak{R}^{m \times m}$
- Upper triangular matrix $\boldsymbol{U}=\left[\begin{array}{ccc}\vdots & \cdots & \vdots \\ 0 & \ddots & \vdots \\ 0 & 0 & \vdots\end{array}\right] \in \mathfrak{R}^{m \times m}$

How to Obtain L and \boldsymbol{U} ?

- The matrices \boldsymbol{L} and \boldsymbol{U} are obtained by using a serious of left-multiplication, i.e.,

$$
\underbrace{L_{m} \ldots L_{2} L_{1}}_{L} A=U
$$

LU Factorization Example

- For example: $\boldsymbol{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 5 \\ 4 & 6 & 8\end{array}\right]$

$$
\begin{gathered}
\boldsymbol{L}_{1} \boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 5 \\
4 & 6 & 8
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 2 & 4
\end{array}\right] \\
\boldsymbol{L}_{2}\left(\boldsymbol{L}_{1} \boldsymbol{A}\right)
\end{gathered}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 2 & 4
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & -2
\end{array}\right]=\boldsymbol{U}, ~ 又
$$

LU Factorization - lu ()

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 5 \\
4 & 6 & 8
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{l}
2 \\
7 \\
3
\end{array}\right]
$$

$$
\begin{aligned}
& A=[111 ; 235 ; 468] ; \\
& {[L, U, P]=1 u(A) ;}
\end{aligned}
$$

- Solving: $\left\{\begin{array}{c}L^{-1} y=b \\ U x=y\end{array}\right.$

> inv(L)

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-.25 & 1 & 0 \\
-.5 & 0 & 1
\end{array}\right] y=\left[\begin{array}{l}
2 \\
7 \\
3
\end{array}\right] \quad\left[\begin{array}{ccc}
4 & 6 & 8 \\
0 & -.5 & -1 \\
0 & 0 & 1
\end{array}\right] \boldsymbol{x}=\boldsymbol{y}
$$

Matrix Left Division: \ or mldivide()

- Solving systems of linear equations $\boldsymbol{A x}=\boldsymbol{b}$ using factorization methods:

$$
\left\{\begin{array}{r}
x+2 y+z=2 \\
2 x+6 y+z=7 \\
x+y+4 z=3
\end{array}\right.
$$

$$
\begin{aligned}
& A=[1 \quad 21 ; 261 ; 114] ; \\
& \mathrm{b}=[2 ; 7 ; 3] ; \\
& \mathrm{x}=\mathrm{A} \backslash \mathrm{~b}
\end{aligned}
$$

http://www.mathworks.com/help/matlab/ref/ mldivide.html?searchHighlight=mldivide

Exercise

- Write a function to solve $i_{1} \ldots i_{5}$ for given V_{1}, V_{2}, and $R_{1} \ldots R_{5}$

Matrix Decomposition Functions

qr	Orthogonal-triangular decomposition
$\underline{1 d l}$	Block LDL' factorization for Hermitian indefinite matrices
ilu	Sparse incomplete LU factorization
lu	LU matrix factorization
chol	Cholesky factorization
gsvd	Generalized singular value decomposition
svd	Singular value decomposition

Cramer's (Inverse) Method

- Given the problem:

$$
\underbrace{\left[\begin{array}{cc}
3 & -2 \\
1 & 4
\end{array}\right]}_{A}[\underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
5 \\
11
\end{array}\right]}_{b}
$$

- Suppose there exists the $\boldsymbol{A}^{-1} \in \mathfrak{R}^{m \times m}$ such that

$$
A A^{-1}=A^{-1} A=I
$$

- The variable \boldsymbol{x} is: $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$

Inverse Matrix

- For a matrix \boldsymbol{A}, the inverse is defined as:

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(\boldsymbol{A})} \operatorname{adj}(\boldsymbol{A})=\frac{1}{\operatorname{det}(\boldsymbol{A})}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

where $\operatorname{det}(\boldsymbol{A})$ is the determinant:

$$
\operatorname{det}(\boldsymbol{A})=|a d-b c|
$$

- Properties: $\boldsymbol{A}=\left(\boldsymbol{A}^{-1}\right)^{-1},(k \boldsymbol{A})^{-1}=k^{-1} \boldsymbol{A}^{-1}$

Solving Equations Using Cramer's Method

- Given equation:

$$
\begin{aligned}
& \left\{\begin{array}{r}
x+2 y+z=2 \\
2 x+6 y+z=7 \\
x+y+4 z=3
\end{array} \Rightarrow\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}
2 \\
7 \\
3
\end{array}\right]\right. \\
& \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lllllll}
1 & 2 & 1 ; 2 & 6 & 1 ; 1 & 4
\end{array}\right] ; \\
& \mathrm{b}=[2 ; 7 ; 3] ; \\
& \mathrm{x}=\mathrm{inv}(\mathrm{~A}) * \mathrm{~b}
\end{aligned}
$$

Exercise

- Plot the planes in 3D: $\left\{\begin{array}{c}x+y+z=0 \\ x-y+z=0 \\ x+3 z=0\end{array}\right.$

Singular

- The inverse matrix does not exist

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
9 & 8 & 7 & 6 \\
1 & 3 & 2 & 8
\end{array}\right]
$$

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrrrrr}
1 & 2 & 3 & 4 ; & 2 & 4 & 6 & 8 ; \\
9 & 8 & 7 & 6 ; & 1 & 3 & 2 & 8
\end{array}\right] ; \\
& \operatorname{inv}(A) \\
& \operatorname{det}(A)
\end{aligned}
$$

Problem with Cramer's Method

- The determinant is zero if the equations are singular, i.e., $\operatorname{det}(A)=0$
- The accuracy is low when the determinant is very close to zero, i.e., $\operatorname{det}(A) \sim 0$
- Recall that

$$
\boldsymbol{A}^{-1}=\frac{1}{\operatorname{det}(\boldsymbol{A})} \operatorname{adj}(\boldsymbol{A})
$$

Functions to Check Matrix Condition

cond	Matrix condition number
rank	Matrix rank

$$
\begin{array}{ccc}
& \boldsymbol{A}= & \\
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4.0001 & 6 \\
9 & 8 & 7
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 6 \\
9 & 8 & 7
\end{array}\right]}
\end{array}
$$

- $\boldsymbol{A x}=\boldsymbol{b}$
- Check the change in \boldsymbol{x} if \boldsymbol{A} changes by a "small" amount δA :

$$
\frac{\|\delta x\|}{\|x\|}<\kappa(\boldsymbol{A}) \frac{\|\delta \boldsymbol{A}\|}{\|\boldsymbol{A}\|}
$$

where $\kappa(\boldsymbol{A})$ is the condition number of \boldsymbol{A}

- A smaller $\kappa(\boldsymbol{A})$ indicate a well-conditioned matrix

$$
\begin{aligned}
& A=\left[\begin{array}{llllll}
1 & 2 & 3 ; & 2 & 4.0001 & 6 ; 98 \\
B & 1 & 2 & 3 ; & 2 & 5 \\
B ; & 9 & 8 & 7
\end{array}\right] ; \quad \operatorname{cond}(B)
\end{aligned}
$$

Linear System

- Suppose you are given linear equations:

$$
\left\{\begin{array}{l}
2 \cdot 2-12 \cdot 4=x \\
1 \cdot 2-5 \cdot 4=y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
3 x-2 y=5 \\
x+4 y=11
\end{array}\right.
$$

- Matrix notation:
<Linear equation>

$$
\underbrace{\left[\begin{array}{cc}
2 & -12 \\
1 & -5
\end{array}\right]}_{\boldsymbol{A}} \underbrace{\left[\begin{array}{l}
2 \\
4
\end{array}\right]}_{\boldsymbol{b}}=\underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{y}
$$

$$
\underbrace{\left[\begin{array}{cc}
3 & -2 \\
1 & 4
\end{array}\right]}_{\boldsymbol{A}} \underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{\boldsymbol{x}}=\underbrace{\left[\begin{array}{c}
5 \\
11
\end{array}\right]}_{\boldsymbol{b}}
$$

- Note the difference between the two formulation

Eigenvalues and Eigenvectors

- For a system $\boldsymbol{A} \in \mathfrak{R}^{m \times m}$, matrix multiplication $\boldsymbol{y}=\boldsymbol{A b}$ is complicated
- Want to find vector(s) $\boldsymbol{v}_{i} \in \Re^{m}$ such that

$$
\boldsymbol{A} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}, \quad \text { where } \lambda_{i} \in \mathfrak{R}
$$

- Then we decompose $\boldsymbol{b}=\sum \alpha_{i} \boldsymbol{v}_{i}, \alpha_{i} \in \Re$
- The multiplication becomes:

$$
\boldsymbol{A} \boldsymbol{b}=\sum \alpha_{i} \boldsymbol{A} \boldsymbol{v}_{i}=\sum \alpha_{i} \lambda_{i} \boldsymbol{v}_{i}
$$

Interpretation of Eigenvalues and Eigenvectors

$$
y=A b
$$

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

$$
\lambda_{1}=1, \quad v_{1}=\left[\begin{array}{r}
-0.71 \\
0.71
\end{array}\right]
$$

$$
\lambda_{2}=3, \quad v_{2}=\left[\begin{array}{c}
0.71 \\
0.71
\end{array}\right]
$$

Solving Eigenvalues and Eigenvectors

- For given $\boldsymbol{A b}=\left[\begin{array}{cc}2 & -12 \\ 1 & -5\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]$

$$
\begin{gathered}
\lambda_{1} \boldsymbol{v}_{1}=-1\left[\begin{array}{c}
0.97 \\
0.24
\end{array}\right], \quad \lambda_{2} \boldsymbol{v}_{2}=-2\left[\begin{array}{c}
0.95 \\
0.32
\end{array}\right] \\
\boldsymbol{b}=\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}=-41.2 \boldsymbol{v}_{1}+44.3 \boldsymbol{v}_{2} \\
\boldsymbol{A} \boldsymbol{b}=\boldsymbol{A}\left(\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}\right) \\
=\alpha_{1} \boldsymbol{A} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{A} \boldsymbol{v}_{2}=\alpha_{1} \lambda_{1} \boldsymbol{v}_{1}+\alpha_{2} \lambda_{2} \boldsymbol{v}_{2} \\
=(-41.2)(-1)\left[\begin{array}{l}
0.97 \\
0.24
\end{array}\right]+(44.3)(-2)\left[\begin{array}{c}
0.95 \\
0.32
\end{array}\right]
\end{gathered}
$$

eig()

- Find the eigenvalues and eigenvectors:

$$
A=\left[\begin{array}{cc}
2 & -12 \\
1 & -5
\end{array}\right]
$$

$$
[\mathrm{v}, \mathrm{~d}]=\mathrm{eig}\left(\left[\begin{array}{lll}
2 & -12 ; 1 & -5
\end{array}\right]\right)
$$

Matrix Exponential: expm ()

- A typical linear time-invariant system is usually formulated as

$$
\boldsymbol{y}=\frac{d x(t)}{d t}=\dot{\boldsymbol{x}}=\boldsymbol{A} \boldsymbol{x}
$$

```
A = [0 -6 -1; 6 2 -16; -5 20 -10];
x0 = [1 1 1]'; X = [];
for t = 0:.01:1
    X = [X expm(t*A)*x0];
end
plot3(X(1,:),X(2,:),X(3,:),'-0');
xlabel('x_1'); ylabel('x_2');
zlabel('x_3'); grid on;
axis tight square;
```


End of Class

