APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo

Dept. of Bio-industrial Mechatronics Engineering
National Taiwan University

Today:

- Symbolic approach
- Numeric root solvers
- Recursive functions

Problem Statement

- Suppose you have a mathematical function $f(x)$ and you want to find x_{0} such that $f\left(x_{0}\right)=0$, e.g.

$$
f(x)=x^{2}-2 x-8=0
$$

- How do you solve the problem using MATLAB?
- Analytical Solutions
- Graphical Illustration
- Numerical Solutions

Symbolic Root Finding Approach

- Performing mathematics on symbols, NOT numbers
- The symbols math are performed using "symbolic variables"
- Use sym or syms to create symbolic variables

```
syms x
x + X + X
(x+x + x)/4
```

```
x=sym('x');
X + X + X
(x+x+x)/4
```

- Define: $y=x^{2}-2 x-8$

Symbolic Root Finding: solve ()

- Function solve finds roots for equations

$$
y=x \cdot \sin (x)-x=0
$$

```
syms x
solve('x*sin(x)-x', x)
```

```
syms x
y = x*sin(x)-x;
solve(y, x)
```

- Find the roots for:

$$
\cos (x)^{2}-\sin (x)^{2}=0 \quad \text { and } \quad \cos (x)^{2}+\sin (x)^{2}=0
$$

Solving Multiple Equations

- Solve this equation using symbolic approach:

$$
\left\{\begin{array}{c}
x-2 y=5 \\
x+y=6
\end{array}\right.
$$

$$
\begin{aligned}
& \text { syms } x y \\
& \text { eq1 }=x-2 \star y-5 ; \\
& \text { eq2 } 2 x+X-6 ; \\
& A=\operatorname{solve}(e q 1, e q 2, x, y)
\end{aligned}
$$

Solving Equations Expressed in Symbols

- What if we are given a function expressed in symbols?

$$
a x^{2}-b=0
$$

```
syms x a b
solve('a*x^2-b')
```

- x is always the first choice to be solved
- What if one wants to express b in terms of a and x ?

$$
\begin{aligned}
& \text { syms x a b } \\
& \text { solve('a*x^2-b', 'b') }
\end{aligned}
$$

Exercise

- Solve this equation for x using symbolic approach

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

- Find the matrix inverse using symbolic approach

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Symbolic Differentiation: diff ()

- Calculate the derivative of a symbolic function:

$$
y=4 x^{5}
$$

```
syms x
y = 4* *^5;
yprime = diff(y)
```

- Exercise:

$$
\begin{array}{ll}
f(x)=\frac{e^{x^{2}}}{x^{3}-x+3}, & \frac{d f}{d x}=? \\
g(x)=\frac{x^{2}+x y-1}{y^{3}+x+3}, & \frac{\partial f}{\partial x}=?
\end{array}
$$

Symbolic Integration:

- Calculate the integral of a symbolic function:

$$
\begin{aligned}
& z=\int y d x=\int x^{2} e^{x} d x, \quad z(0)=0 \\
& \begin{array}{l}
\operatorname{syms} x ; y=x^{\wedge} 2^{\star} \exp (x) ; \\
z=\operatorname{int}(y) ; \quad z=z-\operatorname{subs}(z, x, 0)
\end{array}
\end{aligned}
$$

- Exercise:

$$
\int_{0}^{10} \frac{x^{2}-x+1}{x+3} d x
$$

Symbolic vs. Numeric

Advantages

Disadvantages

Symbolic

- Analytical solutions
- Lets you intuit things about solution form

Numeric

- Always get a solution
- Can make solutions accurate
- Easy to code
- Sometimes can't be solved
- Can be overly complicated
- Hard to extract a deeper understanding

Review of Function Handles (()

- A handle is a pointer to a function
- Can be used to pass functions to other functions
- For example, the input of the following function is another function:

```
function [y] = xy_plot(input,x)
% xy_plot receives the handle of a function and plots that
% function of x
y = input(x); plot(x,y,'r--');
xlabel('x'); ylabel('function(x)');
end
```

-Try: xy_plot(@sin, 0:0.01:2*pi);

Using Function Handles

xy_plot(@sin,0:0.01:2*pi);

fsolve()

- A numeric root solver
- For example, solve this equation:

$$
f(x)=1.2 x+0.3+x \cdot \sin (x)
$$

A function handle Initial guess

Exercise

- Find the root for this equation :

$$
f(x, y)=\left\{\begin{array}{c}
2 x-y-e^{-x} \\
-x+2 y-e^{-y}
\end{array}\right.
$$

using initial value $(x, y)=(-5,-5)$

fzero()

- Anther numeric root solver
- Find the zero if and only if the function crosses the x-axis

```
f=@(x)x.^2
fzero(f,0.1)
fsolve(f,0)
```

- Options:

Number of iterations Tolerance

```
f=@ (x)x.^2
options=optimset('MaxIter',1e3,'TolFun',1e-10);
fsolve(f,0.1,options)
fzero(f,0.1,options)
```


Finding Roots of Polynomials: roots ()

- Find the roots of this polynomial:

$$
\begin{aligned}
& f(x)=x^{5}-3.5 x^{4}+2.75 x^{3}+2.125 x^{2}-3.875 x+1.25 \\
& \operatorname{roots}\left(\left[\begin{array}{llllll}
1 & -3.5 & 2.75 & 2.125 & -3.875 & 1.25
\end{array}\right]\right)
\end{aligned}
$$

- roots only works for polynomials
- Find the roots of the polynomial:

$$
f(x)=x^{3}-6 x^{2}-12 x+81
$$

How Do These Solvers Find the Roots?

- Now we are going to introduce more details of some numeric methods

Numeric Root Finding Methods

- Two major types:
- Bracketing methods (e.g., bisection method)

Start with an interval that contains the root

- Open methods (e.g., Newton-Raphson method)

Start with one or more initial guess points

- Roots are found iteratively until some criteria are satisfied:
- Accuracy
- Number of iteration

Bisection Method (Bracketing)

Assumptions:

- $f(x)$ continuous on $[l, u]$
- $f(l) \cdot f(u)<0$

Algorithm:
Loop

1. $r=(l+u) / 2$
2. If $f(r) \cdot f(u)<0$ then new interval $[r, u]$

If $f(l) \cdot f(r)<0$ then new interval $[l, r]$

End

Bisection Algorithm Flowchart

Newton-Raphson Method (Open)

Assumption:

- $f(x)$ continuous
- $f^{\prime}(x)$ known

Algorithm:
Loop

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

End

Newton-Raphson Algorithm Flowchart

Bisection vs. Newton-Raphson

Bisection • Reliable

- No knowledge of derivative is needed
- Slow
- One function evaluation per iteration
- Needs an interval $[a, b]$ containing the root, $f(a) \cdot f(b)<0$

Newton • Fast but may diverge

- Needs derivative and an initial guess $x_{0}, f^{\prime}(x 0)$ is nonzero

Recursive Functions

- Functions that call themselves
- Example, factorial of an integer n

$$
n!=1 \times 2 \times 3 \times \cdots \times n
$$

- A factorial can be defined in terms of another factorial:

$$
\begin{aligned}
n! & =n \times(n-1)! \\
& =n \times(n-1) \times(n-2)! \\
& =n \times(n-1) \times(n-2) \times(n-3)! \\
& =n \times(n-1) \times(n-2) \times \cdots
\end{aligned}
$$

Factorial Recursive Function

- The function includes a recursive case and a base case
- The function stops when it reaches the base case

```
function output = fact(n)
% fact recursively finds n!
if n==1
    output = 1; & % Base case
else
    output = n * fact(n-1);
end
end
```


End of Class

