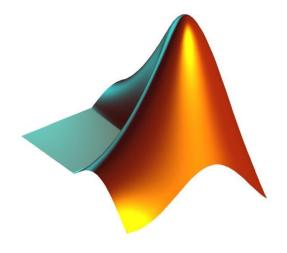
APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

Today:

- Symbolic approach
- Numeric root solvers
- Recursive functions



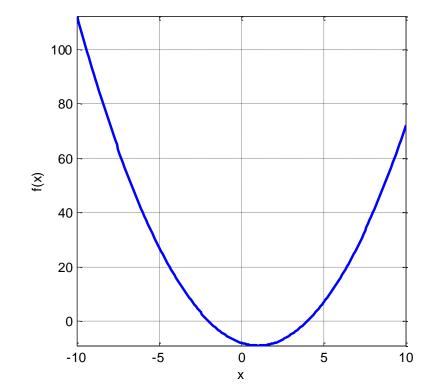
Fall 2015

Problem Statement

• Suppose you have a mathematical function f(x) and you want to find x_0 such that $f(x_0) = 0$, e.g.

$$f(x) = x^2 - 2x - 8 = 0$$

- How do you solve the problem using MATLAB?
 - Analytical Solutions
 - Graphical Illustration
 - Numerical Solutions



Symbolic Root Finding Approach

Performing mathematics on symbols, NOT numbers

Y.-F. Kuo

- The symbols math are performed using "symbolic variables"
- Use sym or syms to create symbolic variables

syms x x + x + x (x + x + x)/4 x=sym('x'); x + x + x (x + x + x)/4

• Define: $y = x^2 - 2x - 8$

Symbolic Root Finding: solve()

Function solve finds roots for equations

$$y = x \cdot \sin(x) - x = 0$$

syms x
solve('x*sin(x)-x', x)

• Find the roots for:

 $\cos(x)^2 - \sin(x)^2 = 0$ and $\cos(x)^2 + \sin(x)^2 = 0$

Solving Multiple Equations

Solve this equation using symbolic approach:

$$\begin{cases} x - 2y = 5\\ x + y = 6 \end{cases}$$

Y.-F. Kuo

syms x y
eq1 = x - 2*y - 5;
eq2 = x + y - 6;
A = solve(eq1,eq2,x,y)

Solving Equations Expressed in Symbols

What if we are given a function expressed in symbols?

$$ax^2 - b = 0$$

syms x a b
solve('a*x^2-b')

- *x* is always the first choice to be solved
- What if one wants to express *b* in terms of *a* and *x*?

syms x a b solve('a*x^2-b', 'b')

Exercise

Solve this equation for x using symbolic approach

$$(x-a)^2 + (y-b)^2 = r^2$$

• Find the matrix inverse using symbolic approach $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Symbolic Differentiation: diff()

Calculate the derivative of a symbolic function:

$$y = 4x^{5}$$

Y.-F. Kuo

syms x y = 4*x^5; yprime = diff(y)

• Exercise:

$$f(x) = \frac{e^{x^2}}{x^3 - x + 3}, \qquad \frac{df}{dx} = ?$$
$$g(x) = \frac{x^2 + xy - 1}{y^3 + x + 3}, \qquad \frac{\partial f}{\partial x} = ?$$

Symbolic Integration:

Calculate the integral of a symbolic function:

$$z = \int y dx = \int x^2 e^x dx, \qquad z(0) = 0$$

syms x;
$$y = x^{2} \exp(x)$$
;
z = int(y); z = z-subs(z, x, 0)

• Exercise:

$$\int_{0}^{10} \frac{x^2 - x + 1}{x + 3} dx$$

Symbolic vs. Numeric

	Advantages	Disadvantages
Symbolic	 Analytical solutions Lets you intuit things about solution form 	 Sometimes can't be solved Can be overly complicated
Numeric	 Always get a solution Can make solutions accurate Easy to code 	 Hard to extract a deeper understanding

Review of Function Handles (@)

- A handle is a pointer to a function
- Can be used to pass functions to other functions
- For example, the input of the following function is another function:

```
function [y] = xy_plot(input,x)
% xy_plot receives the handle of a function and plots that
% function of x
y = input(x); plot(x,y,'r--');
xlabel('x'); ylabel('function(x)');
end
```

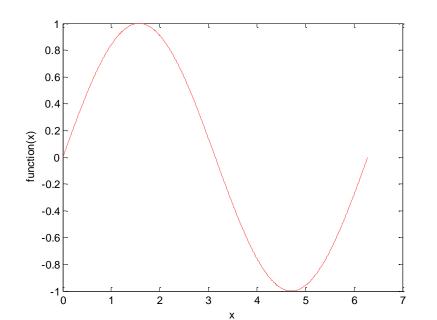
• Try: xy_plot(@sin,0:0.01:2*pi);

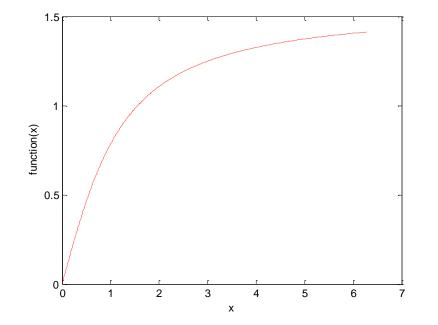
Using Function Handles

xy_plot(@sin,0:0.01:2*pi);

xy_plot(@atan,0:0.01:2*pi);

Y.-F. Kuo

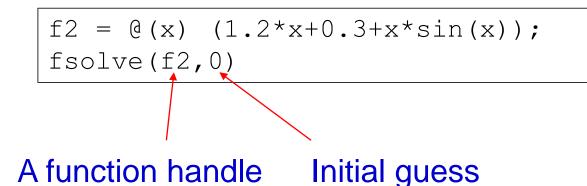




fsolve()

- A numeric root solver
- For example, solve this equation:

 $f(x) = 1.2x + 0.3 + x \cdot \sin(x)$



Exercise

• Find the root for this equation :

$$f(x,y) = \begin{cases} 2x - y - e^{-x} \\ -x + 2y - e^{-y} \end{cases}$$

using initial value (x, y) = (-5, -5)

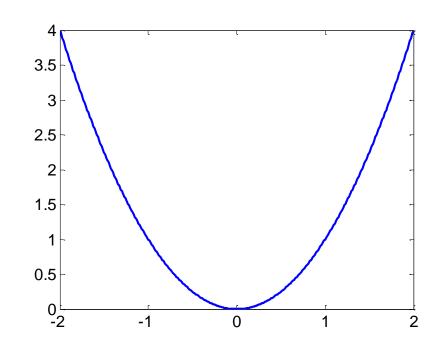
- Anther numeric root solver
- Find the zero if and only if the function crosses the x-axis

f=@(x)x.^2 fzero(f,0.1)

fsolve(f,0)

• Options:

```
f=@(x)x.^2
options=optimset('MaxIter',1e3,'TolFun',1e-10);
fsolve(f,0.1,options)
fzero(f,0.1,options)
```



Number of iterations

Tolerance

Finding Roots of Polynomials: roots()

Y.-F. Kuo

• Find the roots of this polynomial:

 $f(x) = x^5 - 3.5x^4 + 2.75x^3 + 2.125x^2 - 3.875x + 1.25$

roots([1 -3.5 2.75 2.125 -3.875 1.25])

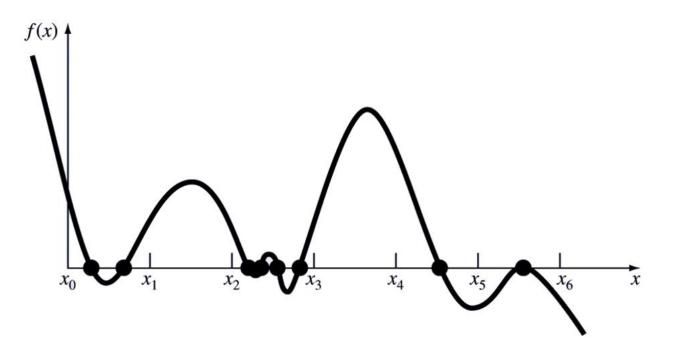
- roots only works for polynomials
- Find the roots of the polynomial:

$$f(x) = x^3 - 6x^2 - 12x + 81$$

How Do These Solvers Find the Roots?

Y.-F. Kuo

 Now we are going to introduce more details of some numeric methods



Numeric Root Finding Methods

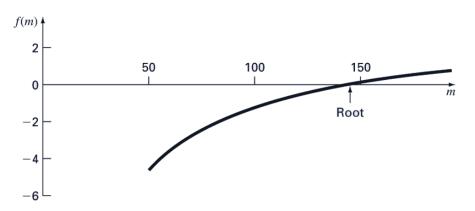
- Two major types:
 - Bracketing methods (e.g., bisection method)
 Start with an <u>interval</u> that contains the root
 - Open methods (e.g., Newton-Raphson method)
 Start with one or more initial guess <u>points</u>

- Roots are found iteratively until some criteria are satisfied:
 - Accuracy
 - Number of iteration

Bisection Method (Bracketing)

Assumptions:

- f(x) continuous on [l, u]
- $f(l) \cdot f(u) < 0$



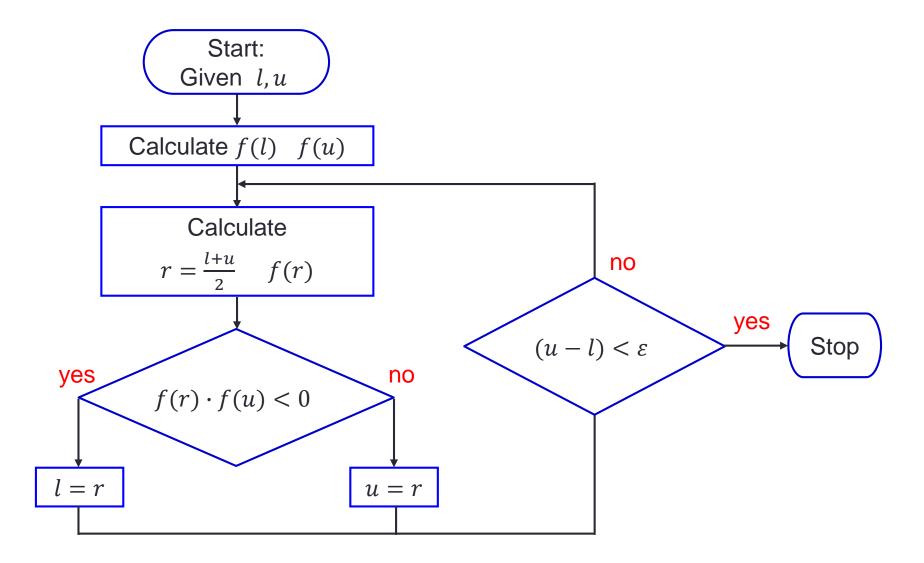
Y.-F. Kuo

<u>Algorithm:</u>

Loop

1.
$$r = (l + u)/2$$

2. If $f(r) \cdot f(u) < 0$ then new interval [r, u]If $f(l) \cdot f(r) < 0$ then new interval [l, r]End



Y.-F. Kuo

Newton-Raphson Method (Open)

Y.-F. Kuo

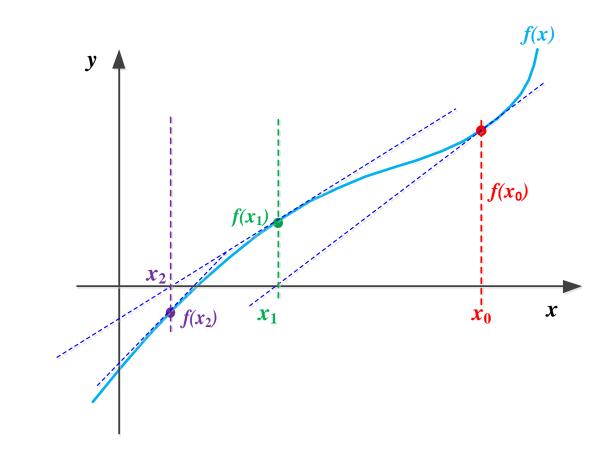
Assumption:

- f(x) continuous
- f'(x) known

<u>Algorithm</u>: Loop

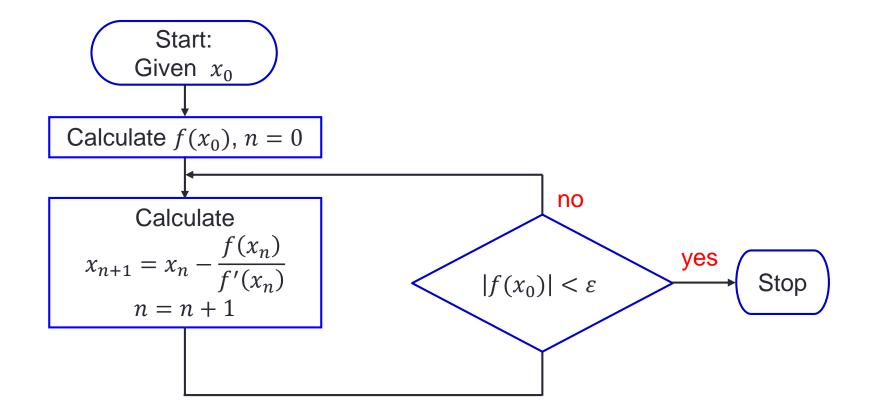
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

End



Newton-Raphson Algorithm Flowchart

Y.-F. Kuo



Bisection vs. Newton-Raphson

Bisection	 • Reliable • No knowledge of derivative is needed 	
	Slow	
	 One function evaluation per iteration 	
	 Needs an interval [a,b] containing the root, f(a)-f(b)<0 	
Newton	 Fast but may diverge 	
	• Needs derivative and an initial guess x_0 , f'(x0) is	
	nonzero	

Recursive Functions

- Functions that call themselves
- Example, factorial of an integer n

 $n! = 1 \times 2 \times 3 \times \dots \times n$

 A factorial can be defined in terms of another factorial:

$$n! = n \times (n - 1)!$$

= $n \times (n - 1) \times (n - 2)!$
= $n \times (n - 1) \times (n - 2) \times (n - 3)!$
= $n \times (n - 1) \times (n - 2) \times \cdots$

Factorial Recursive Function

- The function includes a recursive case and a base case
- The function stops when it reaches the base case

```
function output = fact(n)
% fact recursively finds n!
if n==1
    output = 1; Base case
else
    output = n * fact(n-1); Recursive case
end
end
```

End of Class

